• 제목/요약/키워드: Pore water

검색결과 1,894건 처리시간 0.033초

수축공극크기분포를 이용한 지반의 수리학적 물성치 산정 (Estimating Hydraulic Properties of Soil from Constriction-pore Size Distribution)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제38권3호
    • /
    • pp.27-34
    • /
    • 2022
  • 지반내 물의 흐름은 입자 사이의 공극 분포에 의존하므로 입자의 크기를 이용한 수리학적 물성치의 예측은 정확도가 낮다. 본 논문은 Silveria의 방법을 이용하여 입도분포곡선으로부터 수축 공극크기분포를 산정하고, 포화-불포화 수리학적 물성치를 산정하는 방법을 제시하였다. 입도분포가 양호한 흙은 단봉의 공극크기분포를 보이고, 입도분포가 불량한 흙은 쌍봉의 공극크기분포를 보였다. 공극크기분포를 이용한 이론적 포화투수계수 모델식 중에서 Marshall 모델이 실내실험결과와 가장 부합되었다. 불포화토 수리해석에 필요한 함수특성곡선과 불포화투수계수에 대한 모델식을 공극크기분포를 이용하여 제안하였다. 개발된 모델식을 다양한 흙에 적용하여 수리학적 물성치의 예측에 적합한 모델을 선정하는 지속적인 연구가 필요하다.

균일침전에 의한 AlO(OH) 나노 겔 합성에서 물/황산알루미늄의 몰 비가 세공특성에 미치는 영향 (Effect of Water and Aluminum Sulfate Mole Ratio on Pore Characteristics in Synthesis of AlO(OH) Nano Gel by Homogeneous Precipitation)

  • 최동욱;박병기;이정민
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.564-568
    • /
    • 2006
  • AlO(OH) nano gel is used in precursor of ceramic material, coating material and catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of advanced application products were required. In this study, AlO(OH) nano gel was prepared through the aging and drying process of aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and aluminum sulfate solution. In this process, optimum synthetic condition of AlO(OH) nano gel having excellent pore volume as studying the effect of water and aluminum sulfate mole ratio on gel precipitates has been studied. Water and aluminum sulfate mole ratio brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties were investigated as using XRD, TEM, TG/DTA, FT-IR, and $N_2$ BET method.

Toughness and microscopic pore structure analysis of pasture fiber recycled concrete

  • Hailong Wang;Lei Wang;Hong Yang
    • Advances in concrete construction
    • /
    • 제16권3호
    • /
    • pp.141-153
    • /
    • 2023
  • In order to develop and take full advantage of pasture fiber and waste concrete, this article studied how different amounts of pasture fiber influenced the toughness and pore structure of concrete with different replacement rates of recycled fine aggregate. Pasture fiber recycled concrete constitutive equations were established under idealized stiffness and toughness damage rate, based on fracture energy and damage mechanics theories. The relationship between pore structure and toughness was studied utilizing nuclear magnetic resonance and fractal theory. The toughness of text groups (0% (JZ), 10% (ZS10), 20% (ZS20)) first increased and then decreased with increasing amounts of pasture fiber, based on the damage rate of toughness. The toughness of concrete samples with recycled fine aggregate and pasture fiber is negatively correlated to the fractal dimension of small and medium-sized pores with a pore size of 0-500 nm. At a replacement rate of 10% of the recycled fine aggregate, the fractal dimension of the air voids (r: 500-9000 nm, i.e., Lg(r) ∈ [2.7, 3.9]) shows a gradual decrease with the increase of grass fiber dosage, indicating that with such a replacement rate of the recycled fine aggregate, the increase of pasture fiber can reduce the complexity of the pore structure of the air voids (500-9000 nm).

노후화된 농업용 저수지의 효율적인 리모델링 방법 (Effective Method for Remodeling of Deteriorated Agricultural Reservoirs)

  • 이영학;이달원
    • 한국농공학회논문집
    • /
    • 제59권4호
    • /
    • pp.43-52
    • /
    • 2017
  • This study analyzed pore water pressure, earth pressure and settlement through laboratory model tests in order to suggest the effective remodeling method in the case of reinforcing the upstream and downstream slope of deteriorated reservoirs that has no cores and filters or is not functional. The method of remodeling the upstream slope using dredge soil is first prevent seepage by installing the core, and the leakage water can be rapidly discharged through a filter installed on the downstream slope. Therefore, it is considered a highly efficient method of remodeling that reduces piping phenomena and increasing the storage capacity of the reservoir. The variation of earth pressure without the core and filter was greater than with it, while the change largely showed in the upstream slope, the downstream slope did not show any significant changes. The remodeling method of the downstream slope with the core appeared differently pore water pressure depending on the presence of the vertical and horizontal filters. In the upstream slope, the pore water pressure rises sharply, the base and middle gradually increased, and the downstream slope appeared small. The pore water pressure of embankment with a vertical and horizontal filter will be smaller than without it. The remodeling of deteriorated reservoir that does not have the function of the filter, the vertical filter must be installed in a position that is higher than the expected seepage line by removing portions of the downstream slopes. Since the horizontal filter is an important structure that provides stable drainage during an earthquake or concentrated leak, it is necessary to examine any change in the seepage characteristics depending on the filter intervals via three-dimensional finite element analysis, and it should be connected to the tow-drain to reduce the possibility of the collapse of the reservoir.

지진발생시 과잉간극수압비의 증가에 따른 지중 매설구조물의 거동 (Behavior of Buried Geo-structures due to Increase of Excess Pore Water Pressure Ratio During Earthquakes)

  • 강기천
    • 한국지반공학회논문집
    • /
    • 제27권12호
    • /
    • pp.27-37
    • /
    • 2011
  • 강한 지진 발생 시 뒤채움내의 과잉간극수압의 증가에 의해 지반이 액상화 되었을 때, 주변의 액상화 지반보다 작은 단위중량을 가진 지중 매설구조물은 부상하는 현상이 발생한다. 뒤채움에서의 과잉간극수압의 증가와 지중 매설 구조물 부상량의 관계를 설명하기 위해 동적 원심모형 실험을 수행되었다. 본 연구에서는, 매설구조물의 부상현상에 영향을 미치는 요인으로써 직접요인과 간접요인이 실험에 고려되었다. 이러한 요인들 중에, 과잉간극수압비의 증가에 영향을 주는 중요한 요인은 직접요인으로써의 지하수위, 뒤채움의 상대밀도, 그리고 입력 지진가속도의 크기이다. 그리고 이 요인들은 지중 매설구조물의 부상량에도 크게 영향을 주는 것으로 나타났다.

도공층의 공극과 인쇄적성에 관한 연구(제3보) -라텍스의 특성이 미치는 영향- (Studies on the Pore of Coating Layer and Printability(III) -Effects of Properties of Latices on Pore of Coating Layer-)

  • 이용규;김창근
    • 펄프종이기술
    • /
    • 제33권2호
    • /
    • pp.41-48
    • /
    • 2001
  • This paper was made to evaluate the effect of the type of latex for coating on the printability by investigating the structure of pore such as the pore fraction, the number of pores, pore size and distribution of coated paper. The coated structure is mainly depend on the results of interaction between pigment and binder. It means that the structure of pore formed is chiefly affected by the type of latex. This physical properties of pore have a close relation with ink set-off associated with the drying rate, the speed of penetration of ink into base paper and printing gloss. Therefore it was necessary to find out the relationship between pore structure and the performance of printability by modifying the type of latex to vary the pore structure of coated paper. Acrylic latex was superior to S/B latex in the sedimentation volume, compressibility, smoothness, pore fraction and its number, the weight of transferred ink onto the coated paper and ink repellance. In contrast, water retention and ink setting were not good. in the comparison of anionic and amphoteric latex, amphoteric latex showed better performance in the thickness, smoothness, pore fraction and its number, pore size, the weight of ink transmitted and K&N ink receptivity, etc.

  • PDF

공극제어형 섬유사 여과기를 이용한 복류수의 탁도 제거효율 평가 (Evaluation of Turbidity Removal Efficiency on under Flow Water by Pore Controllable Fiber Filtration)

  • 김정현;배철호;김충환;박노석;이선주;안효원;허현철
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.135-143
    • /
    • 2005
  • It was evaluated that the effect of turbidity removal by Pore Controllable Fiber Filter(PCF) installed in NS(Naksang) small water treatmant plant(system) using under flow water as raw water in the study. The results of the study are as the followings. Firstly, the removal efficiency of turbidity by PCF without coagulation(in operation mode not using coagulants) was mostly below 20 percent. On the other hand, when operation using proper coagulants, that of turbidity was mostly over 80 percent. Secondly, slow sand filtration after PCF, total turbidity removal efficiency of final treated water was 84.3 percent, and the contribution by PCF was 57.1 percent and that of slow sand filtration was 27.7 percent. Therefore the introduction of PCF as pre-treatment process would be helpful to reduce the loading of high turbidity of slow sand filtration. Thirdly, the results of particle counter measurements showed that when operated PCF with coagulants, fine flocs captured or adsorbed at the pore of PCF were flow out into the effluents from 120 minutes after backwashing because of the increase of headloss of PCF. Therefore the decision of backwashing time should made consideration into the outflow of fine flocs from PCF. Fourth, coagulant dosages on PCF at the same turbidity was largely variable because of the effect of the raw water characteristics and the turbidity increase velocity at rainy days, therefore flexible coagulant dosages should be considered rather than fixed coagulant dosage by the influent jar-test result.

Thaw consolidation behavior of frozen soft clay with calcium chloride

  • Wang, Songhe;Wang, Qinze;Xu, Jian;Ding, Jiulong;Qi, Jilin;Yang, Yugui;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • 제18권2호
    • /
    • pp.189-203
    • /
    • 2019
  • Brine leakage is a common phenomenon during construction facilitated by artificial freezing technique, threatening the stability of frozen wall due to the continual thawing of already frozen domain. This paper takes the frequently encountered soft clay in Wujiang District as the study object, and remolded specimens were prepared by mixing calcium chloride solutions at five levels of concentration. Both the deformation and pore water pressure of frozen specimens during thawing were investigated by two-stage loading tests. Three sections were noted from the changes in the strain rate of specimens during thawing at the first-stage load, i.e., instantaneous, attenuated, and quasi-stable sections. During the second-stage loading, the deformation of post-thawed soils is closely correlated with the dissipation of pore water pressure. Two characteristic indexes were obtained including thaw-settlement coefficient and critical water content. The critical water content increases positively with salt content. The higher water content of soil leads to a larger thaw-settlement coefficient, especially at higher salt contents, based on which an empirical equation was proposed and verified. The normalized pore water pressure during thawing was found to dissipate slower at higher salt contents, with a longer duration to stabilize. Three physical indexes were experimentally determined such as freezing point, heat conductivity and water permeability. The freezing point decreases at higher salt contents, especially as more water is involved, like the changes in heat conductivity. The water permeability maintains within the same order at the considered range of salt contents, like the development of the coefficient of consolidation. The variation of the pore volume distribution also accounts for this.

터널 라이닝에 작용하는 합리적인 잔류수압 적용방안 검토 (A study for application plan of rational residual water pressure on the tunnel linings)

  • 정국영;김지엽;김지훈;문훈기
    • 한국터널지하공간학회 논문집
    • /
    • 제13권6호
    • /
    • pp.463-499
    • /
    • 2011
  • 지중에 건설되는 터널은 대부분 지하수위 하부에 위치하므로 지하수 처리문제는 터널의 장기운영에 있어 매우 중요하다. 배수형 터널의 경우 수리기능이 원활하면 라이닝에 수압이 작용하지 않으나 장기 운영으로 인해 배수시스템의 열화가 진행되면서 라이닝 배면에 잔류수압이 작용할 수 있다. 본 연구에서는 배수재 및 배수공 폐색 조건에 따른 터널에 작용하는 수압분포를 ICFEP프로그램을 활용하여 수치해석적으로 고찰하고 현재 적용중인 잔류수압과의 비교 분석을 통해 라이닝에 작용하는 합리적인 잔류수압 적용 방안을 검토하였다.

물유리의 수분 함량 및 열처리 온도에 따른 다공체의 특성 (Characteristics of Porous Ceramics Depending on Water Content of the Water Glass and Heat Treatment Temperature)

  • 공양표;서상훈;김종호;서동수
    • 한국세라믹학회지
    • /
    • 제42권10호
    • /
    • pp.691-697
    • /
    • 2005
  • Porous ceramics which have closes pore were fabricated by heat treatment at 100$\∼$ 600$^{\circ}C$ for 30 min using dried water glasses with 25, 35, and 45 wt$\%$ water contents. Size and distribution of the closed pore were varied depending on the water contents and heat treatment temperature. The expansion procedure could be distinguished by two stages. The frist stage occurred around loo$\%$ due to the evaporation of water and the second stage occurred at 200$\∼$400$^{\circ}C$ due to the decomposition of Si-OH compounds. The specimen was not expanded successfully because of the softening of the dried water glass at 500$\∼$600$^{\circ}C$.