• Title/Summary/Keyword: Pore structures

검색결과 519건 처리시간 0.026초

Electrospun Polyacrylonitrile-Based Carbon Nanofibers and Their Hydrogen Storages

  • Kim Dong-Kyu;Park Sun Ho;Kim Byung Chul;Chin Byung Doo;Jo Seong Mu;Kim Dong Young
    • Macromolecular Research
    • /
    • 제13권6호
    • /
    • pp.521-528
    • /
    • 2005
  • Electrospun polyacrylonitrile (PAN) nanofibers were carbonized with or without iron (III) acetylacetonate to induce catalytic graphitization within the range of 900-1,500$^{circ}C$, resulting in ultrafine carbon fibers with a diameter of about 90-300 nm. Their structural properties and morphologies were investigated. The carbon nanofibers (CNF) prepared without a catalyst showed amorphous structures and very low surface areas of 22-31 $m^{2}$/g. The carbonization in the presence of the catalyst produced graphite nanofibers (GNF). The hydrogen storage capacities of these CNF and GNF materials were evaluated through the gravimetric method using magnetic suspension balance (MSB) at room temperature and 100 bar. The CNFs showed hydrogen storage capacities which increased in the range of 0.16-0.50 wt$\%$ with increasing carbonization temperature. The hydrogen storage capacities of the GNFs with low surface areas of 60-253 $m^{2}$/g were 0.14-1.01 wt$\%$. Micropore and mesopore, as calculated using the nitrogen gas adsorption-desorption isotherms, were not the effective pore for hydrogen storage.

Investigation of Demixing Phenomena of a Polymer Solution During the Phase Inversion Process

  • Han, Myeong-Jin;D. Bhattacharyya
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 춘계 총회 및 학술발표회
    • /
    • pp.11-15
    • /
    • 1995
  • Polysulfone (PS) membranes were prepared by the phase inversion process using water or isopropanol as nonsolvent. The Flory-Huggins theory for a ternary system nonsolvent/solvent/polymer is applied to describe the thermodynamic equilibria of the components. The calculated ternary phase equilibria show that demixing of a PS binary solution with n-methylpyrrolidone (NMP) will be fast in a water coagulation bath and will be delayed in an isopropanol bath. The prepared membranes were characterized by SEM, gas adsorption-desorption measurement, and permeability test. The membrane, which is precipitated by fast demixing in a water bath, has nodular structures in the skin region and includes finger-like cavities in the sublayer. The membrane coagulated by isopropanol has a very dense and thick skin structure, which is formed by delayed demixing. The membrane coagulated by isopropanol showed considerably lower pore volume and surface area compared to that observed with water coagulation method. With dimethylformamide (DMF) as solvent and 2-3 wt% of water, the solution can show the liquid-liquid phase separation due to agglomation of the polymer-lean phase from the homogeneous solution. The membranes, which were coagulated near an equilibrium state, show the large (micron size) round pores in the whole membranes. The pores do not contribute the permeation characteristics.

  • PDF

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.

Liquefaction and post-liquefaction behaviour of a soft natural clayey soil

  • Kheirbek-Saoud, Siba;Fleureau, Jean-Marie
    • Geomechanics and Engineering
    • /
    • 제4권2호
    • /
    • pp.121-134
    • /
    • 2012
  • The paper presents the results of identification, monotonous and cyclic triaxial tests on a potentially liquefiable soil from the Guadeloupe island. The material is a very soft clayey soil whose susceptibility to liquefaction is not clear when referring to index properties such as grain size distribution, plasticity, etc. The classifications found in the literature indicate that the material has rather a "clay-like" behaviour, i.e., is not very susceptible to liquefaction, but its properties are very close to the threshold values given by the authors. Cyclic triaxial tests carried out on the material under different conditions show that liquefaction is possible for a relatively important level of cyclic deviator or number of cycles. The second part of the paper is devoted to the study of the recovery of the soil after liquefaction and possibly reconsolidation. For the specimens tested without reconsolidation, that simulated the soil immediately after an earthquake, the recovery is nearly non-existent but the drop in pore pressure during extension results in a small available strength. On the contrary, after reconsolidation, the increase in strength of the liquefied specimens is quite large, compared to the initial state, but with unchanged failure envelopes.

전기화학적 방법을 통한 3차원 금속 다공성 막의 제조 (Fabrication of Three-Dimensional Network Structures by an Electrochemical Method)

  • 강대근;허정호;신헌철
    • 한국재료학회지
    • /
    • 제18권3호
    • /
    • pp.163-168
    • /
    • 2008
  • The morphology of three-dimensional (3D) cross-linked electrodeposits of copper and tin was investigated as a function of the content of metal sulfate and acetic acid in a deposition bath. The composition of copper sulfate had little effect on the overall copper network structure, whereas that of tin sulfate produced significant differences in the tin network structure. The effect of the metal sulfate content on the copper and tin network is discussed in terms of whether or not hydrogen evolution occurs on electrodeposits. In addition, the hydrophobic additive, i.e., acetic acid, which suppresses the coalescence of evolved hydrogen bubbles and thereby makes the pore size controllable, proved to be detrimental to the formation of a well-defined network structure. This led to a non-uniform or discontinuous copper network. This implies that acetic acid critically retards the electrodeposition of copper.

Analysis of Decontamination from Concrete by Microwave Power

  • 지광습
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.603-608
    • /
    • 2004
  • The paper analyzes a scheme of decontamination of radionuclides from concrete structures, in which rapid microwave heating is used to spall off a thin contaminated surface layer. The analysis is split in two parts: (1) The hygrothermal part of the problem, which consists in calculating the evolution of the temperature and pore pressure fields, and (2) the fracturing part, which consists in predicting the stresses, deformations and fracturing. The rate of the distributed source of heat due to microwaves in concrete is calculated on the basis of the standing wave normally incident to the concrete wall with averaging over both the time period and the wavelength because of the very short time period of microwaves compared to the period of temperature waves and the heterogeneity of concrete. The reinforcing bars parallel to the surface arc treated as a smeared steel layer. The microplane model M4 is used as the constitutive model for nonlinear deformation and distributed fracturing of concrete. The aim of this study is to determine the required microwave power and predict whether and when the contaminated surface layer of concrete spalls off. The effects of wall thickness, reinforcing bars, microwave frequencies and power are studied numerically. As a byproduct of this analysis, the mechanism of spalling of rapidly heated concrete is clarified.

  • PDF

정렬된 다공질 산화알루미늄을 이용한 새로운 다결정 실리콘 결정화 방법 (Novel Method of Poly-silicon Crystallization using Ordered Porous Anodic Alumina)

  • 김종연;김미정;김병용;오병윤;한진우;한정민;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.396-396
    • /
    • 2007
  • Highly ordered pore structures as a template for formation of seeds have been prepared by the self-organization process of aluminum oxidation. The a-Si films were deposited on the anodic alumina films and crystallized by laser irradiation. It was found that un-melted part of fine poly-Si grain formed by explosive crystallization (EX) lead super lateral growth(SLG) and occluded with neighbor grains. The crystallized grains along the distribution of seeds were obtained. This results show a great potential for use in novel crystallization for decently uniform polycrystalline Si thin film transistors (poly-Si TFTs).

  • PDF

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

3.5 중량% NaCl 용액에서 쌍선 아크 용사 공정으로 증착된 Al-Zn 코팅의 부식 성능에 대한 기공 밀봉제로서의 헥사메타인산나트륨의 영향 (Effect of sodium hexa-meta phosphate as pore-sealing agent on the corrosion performance of Al-Zn coating deposited by twin-wire arc thermal spray process in 3.5 wt.% NaCl solution)

  • 지텐드라 쿠마 싱;잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.81-82
    • /
    • 2022
  • Al and Zn are used to protect the steel structures from corrosion. In the present studies, 15Al-85Zn alloy wires has been used for the deposition of coating by arc thermal spray process. Moreover, this process of coating exhibited severe defects formation, therefore, this coating was post-treated with different concentrations i.e. 0.05, 0.1 and 0.5M sodium hexa meta phosphate (Na6[(PO3)6]: SHMP) to fill to defects of deposited coatings and assessed their corrosion resistance in 3.5 wt.% NaCl solution with exposure periods. After the treatment, the porosity of the coating reduced significantly by formation of composite oxide films onto the coating surface. Initially, 0.5 M SHMP treated coating exhibited highest in total impedance due to significant reduction of porosity but once the exposure periods are extended, the composite oxides are dissolved, thus, total impedance is decreased.

  • PDF

Cost-effective method for reducing local failure of floodwalls verified by centrifuge tests

  • Chung R. Song;Binyam Bekele;Brian D. Sawyer;Ahmed Al-Ostaz;Alexander Cheng;Vanadit-Ellis Wipawi
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.155-165
    • /
    • 2023
  • Hurricane Katrina swept New Orleans, Louisiana, USA, in 2005, causing more than 1,000 fatalities and severe damage to the flood protection system. Recovery activities are complete, however, clarifying failure mechanisms and devising resilient and cost-effective retrofitting techniques for the flood protection system are still of utmost importance to enhance the general structural integrity of water retaining structures. This study presents extensive centrifuge test results to find various failure mechanisms and effective retrofitting techniques for a levee system. The result confirmed the rotational failure and translational failure mechanisms for the London Ave. Canal levee and 17th St. Canal levee, respectively. In addition, it found that the floodwalls with fresh waterstop in their joints perform better than those with old/weathered waterstop by decreasing pore water pressure build-up in the levee. Structural caps placed on the top of the joints between I-walls could also prevent local failure by spreading the load to surrounding walls. At the same time, the self-sealing bentonite-sand mixture installed along the riverside of floodwalls could mitigate the failure of floodwalls by blocking the infiltration of seepage water into the gap formed between levee soils and floodwalls.