• Title/Summary/Keyword: Pore structure analysis

Search Result 296, Processing Time 0.029 seconds

Synthesis and Characterization of ZrO2 Ceramic Ink for Dispenser Printing (디스펜서 프린팅을 위한 ZrO2 세라믹 잉크의 합성 및 특성 평가)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.95-100
    • /
    • 2018
  • In this study, $ZrO_2$ ceramic ink was formulated for additive manufacturing three dimensional structure using dispenser printing technique. Ceramic ink with various $ZrO_2$ loading (30, 40, 50vol%) was prepared to evaluate their rheological properties and printability. High $ZrO_2$ loading $ZrO_2$ ceramic ink showed higher elastic modulus and improved shape retention, when the ceramic ink was printed and sintered at $1450^{\circ}C$ for 1h. Microstructural analysis of printed $ZrO_2$ objective indicated that high $ZrO_2$ loading objective showed lower porosity and smaller pore size.

Synthesis and Properties of Partially Hydrolyzed Acrylonitrile-co-Acrylamide Superabsorbent Hydrogel

  • Pourjavadi, Ali;Hosseinzadeh, Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3163-3172
    • /
    • 2010
  • In this work, a novel method to synthesis of an acrylic superabsorbent hydrogel was reported. In the two stage hydrogel synthesis, first copolymerization reaction of acrylonitrile (AN) and acrylamide (AM) monomers using ammonium persulfate (APS) as a free radical initiator was performed. In the second stage, the resulted copolymer was hydrolyzed to produce carboxamide and carboxylate groups followed by in situ crosslinking of the polyacrylonitrile chains. The results from FTIR spectroscopy and the dark red-yellow color change show that the copolymerization, alkaline hydrolysis and crosslinking reactions have been do take place. Scanning electron microscopy (SEM) verifies that the synthesized hydrogels have a porous structure. The results of Brunauer-Emmett-Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 13.9 nm. The synthetic parameters affecting on swelling capacity of the hydrogel, such as AM/AN weight ratio and hydrolysis time and temperature, were systematically optimized to achieve maximum swelling capacity (330 g/g). The swollen gel strength of the synthesized hydrogels was evaluated via viscoelastic measurements. The results indicated that superabsorbent polymers with high water absorbency were accompanied by low gel strength. The swelling of superabsorbent hydrogels was also measured in various solutions with pH values ranging from 1 to 13. Also, the pH reversibility and on-off switching behavior makes the hydrogel as a good candidate for controlled delivery of bioactive agents. Finally, the swelling of synthesized hydrogels with various particle sizes obey second order kinetics.

Synthesis and surface characterization of mesoporous carbon for the adsorption of methane gas (메탄가스 흡착을 위한 메조포러스 카본 합성과 표면 특성 연구)

  • Park, Sang-Won;Lee, Kamp-Du;Noh, Min-Soo
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.837-845
    • /
    • 2013
  • This study was designed to synthesize mesoporous carbon, porous carbonic material and to characterize its surface in an attempt to adsorption methane gas($CH_4$). Synthesis of mesoporous carbon was carried out under two steps ; 1. forming a RF-silica complex with a mold using CTMABr, a surfactant, and TEOS, raw material of silica, and 2. eliminating silica through carbonization and HF treatment. The mesoporous carbon was synthesized under various conditions of synthesis time and calcination. Eight different types of mesoporous carbon, which were designated as MC1, MC2, MC3, MC4, MCT1, MCT2, MCT3, and MCT4, were prepared depending upon preparation conditions. The analysis of mesoporous carbon characteristics showed that the calcination of silica stabilized the mixed structure of silica and carbonic complex, and made the particle uniform. The results also showed that hydrothermal synthesis time did not have a strong influence on the size of pore. The bigger specific surface area was obtained as the hydrothermal synthesis time was extended. However, the specific surface area was getting smaller again after a certain period of time. In adsorption experiments, $CH_4$ was used as adsorbate. For the case of $CH_4$, MCT3 showed the highest adsorption efficiency.

Characteristics of Surface Modified Activated Carbons Prepared by Potassium Salt Sequentially After Hydrochloric Acid Treatment

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2006
  • The objective of this paper is to compare the variation of surface properties by hydrochloric acid pre-treatment and of metallic potassium and their salts loading effect for activated carbon after surfaces transformation by acid. From the results of nitrogen adsorption, each isotherm shows a distinct knee band, which is closely related to the characteristic of microporous carbons with capillary condensation in micropores. In order to present the causes of the differences in surface properties and $S_{BET}$ after the samples were treated with hydrochloric acid, pore structure and surface morphology are investigated by adsorption analysis. X-ray diffraction (XRD) patterns indicate that activated carbons show better performance for metallic potassium and potassium salts by pre-treatment with hydrochloric acid. Scanning electron microscopy (SEM) pictures of potassium/activated carbon particles provide information about the homogeneous distribution of metal or metal complex on the surface. For the chemical composition microanalysis for potassium treatment of the activated carbon pre-treated with hydrochloric acid, samples were analyzed by energy disperse X-ray (EDX). Finally, the type and quality of oxygen groups are determined from the method proposed by Boehm. A positive influence of the acidic groups on the carbon surface by acid treatment is also demonstrated by an increase in the contents of potassium salts with increasing of acidic groups calculated from Boehm titration.

  • PDF

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip;Dey, Apurba;Pal, Umapada
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.295-307
    • /
    • 2016
  • The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.

Estimation of Hydraulic Properties in Porous Media (다공성 매질의 수리특성 추정)

  • Park, Jae-Hyeon;Park, Chang-Kun;Soun, Jung-Ho
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.107-113
    • /
    • 1994
  • The analysis of Richards eq. requires data of the soil water retention function and the unsaturated hydraulic conductivity. The soil water retention function was measured through the use of the developed apparatus and the saturated hydraulic conductivity was measured by the constant head method for each soil sample corresponding to the A, B, C types of SCS. In order to obtain one water retention function and one unsaturated hydraulic conductivity which represent each soil group, van Genuchten's eq. and Mualem's pore-structure model was chosen respectively. Parameters of van Genuchten's eq. are estimated for each soil group using data obtained in the experiments, and estimated values give a basis to analyze the unsaturated flow in the non-measured region efficiently.

  • PDF

Effects of Current Density and Phosphoric Acid Concentration on Anodic Oxide Film of Titanium (전류밀도와 전해액의 인산농도가 Ti 양극 산화 피막에 미치는 영향)

  • Kim, Kye-Sung;Chung, Won-Sub;Shin, Heon-Cheol;Choe, Young-Son;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.370-376
    • /
    • 2008
  • The formation of anodic oxide film of titanium (Ti) was studied at a variety of electrolyte concentrations and current density to clarify their effects on morphology, microstructure and composition of Ti oxide layer. For the analysis of the Ti oxide films, a scanning electron microscopy (SEM), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were used. The results showed that the concentration of phosphoric acid played a crucial role in the crystalline structure of the Ti oxide layer while the current density gave a critical effect on the thickness and diameter of its pore. In particular, the crystalline anatase phase with a thickness larger than $2{\mu}m$, which is quite desirable for a dental implant application, could be readily prepared at the phosphoric acid concentration of 0.5 M and current density higher than $2.0A/dm^2$.

A Study on the Beginning Point of Secondary Compression in Consolidation Theory (압밀이론에서 2차 압축 적용 시점에 관한 연구)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.51-63
    • /
    • 2023
  • To improve the problem that the settlement curve of the consolidation theory of Terzaghi does not match well with the actual settlement curve, we included a secondary compression settlement and analyzed it by varying the beginning point and then obtained the following results. The current methods of calculating the compression index from the  log𝜎 curve and the coefficient of consolidation from the time-dependent settlement curve for each consolidation pressure proved that the final settlement amount will be consistent after a long time, but the actual settlement amount will always be smaller than the predicted settlement amount during the settlement progress stage. The consolidation factors estimated by the curve fitting with the condition that the secondary compression begins in the second half of the primary compression showed similar values to the consolidation factors estimated by the curve fitting for the primary compression only, and the settlement curves were in better agreement throughout the compression. It showed different values, showing low validity. It can be inferred that secondary compression acts from the point when a significant portion of the excess pore water pressure is dissipated, and the loading stress begins to have more influence on the skeletal structure of the soil. Analysis results show that secondary compression begins at the range of 91 % to 98 % on the average degree of primary consolidation.

Analysis of Water Penetration through Pores in Spray-applied Waterproofing Membrane Using X-ray CT Images (X-ray CT를 이용한 분무식 방수 멤브레인의 공극 내 물 침투 분석)

  • Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho;Lee, Chulho;Choi, Myung-Sik;Kim, Kwang Yeom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.211-219
    • /
    • 2017
  • The spray-applied waterproofing membrane is installed on shotcrete or concrete surface to make impermeable layer with 3-5 mm thick for the purpose of waterproofing. This study aims to determine the internal structure of a spray-applied waterproofing membrane including pores by using X-ray CT technique. Before obtaining X-ray images of the membrane specimens, a waterproof performance test was performed on the membrane specimens with a water pressure of 500 kPa for 28 days. Results show that the movement of moisture is made through micropores. This is based on the fact that the large pores inside the membrane are not saturated and the degrees of saturation of the micropores are high. X-ray image is effective for determining the pore size distribution and whether the membrane with pores contains the water However, it is necessary to pay attention to the determination of water content, since water content may vary depending on the threshold value of X-ray image analysis applied to calculate the water content.

Pervaporation Characteristics of Water/Ethanol and Water/Isopropyl Alcohol Mixtures through Zeolite 4A Membranes: Activity Coefficient Model and Maxwell Stefan Model (제올라이트 4A 분리막을 이용한 물/에탄올, 물/이소프로필알코올 혼합물의 투과증발 특성 연구 : 활동도계수모형 및 Generalized Maxwell Stefan 모형)

  • Oh, Woong Jin;Jung, Jae-Chil;Lee, Jung Hyun;Yeo, Jeong-gu;Lee, Da Hun;Park, Young Cheol;Kim, Hyunuk;Lee, Dong-Ho;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this study, pervaporation experiments of water, ethanol and IPA (Isopropyl alcohol) single components and water/ethanol, water/IPA mixtures were carried out using zeolite 4A membranes developed by Fine Tech Co. Ltd. Those membranes were fabricated by hydrothermal synthesis (growth in hydrothermal condition) after uniformly dispersing the zeolite seeds on the tubular alumina supports. They have a pore size of about $4{\AA}$ by ion exchange of $Na^+$ to the LTA structure with Si/Al ratio of 1.0, and shows strong hydrophilic property. Physical characteristics of prepared membranes were evaluated by using SEM (surface morphology), porosimetry (macro- or meso- pore analysis), BET (micropore analysis), and load tester (compressive strength). Pervaporation experiments with various temperature and concentration conditions confirmed that the zeolite 4A membrane can selectively separate water from ethanol and IPA. Water/ethanol separation factor was over 3,000 and water/IPA separation factor was over 1,500 (50 : 50 wt%, initial feed concentration). Pervaporation behaviors of single components and binary mixtures were predicted using ACM (activity coefficient model), GMS (generalized Maxwell Stefan) model and DGM (Dusty Gas Model). The adsorption and diffusion coefficients of the zeolite top layer were obtained by parameter estimation using GA (Genetic Algorithm, stochastic optimization method). All the calculations were carried out using MATLAB 2018a version.