DOI QR코드

DOI QR Code

Synthesis and Characterization of ZrO2 Ceramic Ink for Dispenser Printing

디스펜서 프린팅을 위한 ZrO2 세라믹 잉크의 합성 및 특성 평가

  • Lee, Ji-Hyeon (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Hae-Jin (Division of Material Science and Engineering, Inha University) ;
  • Kim, Jin-Ho (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
  • 이지현 (한국세라믹기술원 도자세라믹센터) ;
  • 황해진 (인하대학교 신소재공학과) ;
  • 김진호 (한국세라믹기술원 도자세라믹센터) ;
  • 황광택 (한국세라믹기술원 도자세라믹센터) ;
  • 한규성 (한국세라믹기술원 도자세라믹센터)
  • Received : 2017.09.27
  • Accepted : 2017.12.22
  • Published : 2018.02.27

Abstract

In this study, $ZrO_2$ ceramic ink was formulated for additive manufacturing three dimensional structure using dispenser printing technique. Ceramic ink with various $ZrO_2$ loading (30, 40, 50vol%) was prepared to evaluate their rheological properties and printability. High $ZrO_2$ loading $ZrO_2$ ceramic ink showed higher elastic modulus and improved shape retention, when the ceramic ink was printed and sintered at $1450^{\circ}C$ for 1h. Microstructural analysis of printed $ZrO_2$ objective indicated that high $ZrO_2$ loading objective showed lower porosity and smaller pore size.

Keywords

References

  1. I. Denry and J. R. Kelly, Dent. Mater., 24, 299 (2008). https://doi.org/10.1016/j.dental.2007.05.007
  2. R. H. J. Hannink, P. M. Kelly and B. C. Muddle, J. Am. Ceram. Soc., 83, 461 (2000).
  3. C. Piconi and G. Maccauro, Biomaterials, 20, 1 (1999). https://doi.org/10.1016/S0142-9612(98)00010-6
  4. P. Calvert and R. Crockett, Chem. Mater., 9, 650 (1997). https://doi.org/10.1021/cm9604726
  5. L. S. Dimas, G. H. Bratzel, I. Eylon and M. J. Buehler, Adv. Funct. Mater., 23, 4629 (2013). https://doi.org/10.1002/adfm.201300215
  6. M. L. Griffith and J. W. Halloran, J. Am. Ceram. Soc., 79, 2601 (1996).
  7. K. Liu, H. Sun, Y. Tan, Y. Shi, J. Liu, S. Zhang and S. Huang, Int. J. Adv. Manuf. Technol., 90, 945 (2017). https://doi.org/10.1007/s00170-016-9441-3
  8. C. Griffin, J. Daufenbach and S. McMillin, Am. Ceram. Soc. Bull., 73, 109 (1994).
  9. S. J. Kalita, S. Bose, H. L. Hosick and A. Bandyopadhyay, Mater. Sci. Eng. C., 23, 611 (2003). https://doi.org/10.1016/S0928-4931(03)00052-3
  10. Q. Fu, E. Saiz and A. P. Tomsia, Adv. Funct. Mater., 21, 1058 (2011). https://doi.org/10.1002/adfm.201002030
  11. C. R. Tubio, F. Guitian and A. Gil, J. Eur. Ceram. Soc., 36, 3409 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.025
  12. B. G. Compton and J. A. Lewis, Adv. Mater., 26, 5930(2014). https://doi.org/10.1002/adma.201401804
  13. J. E. Smay, J. Cesarano III and J. A. Lewis, Langmuir, 18, 5429 (2002). https://doi.org/10.1021/la0257135
  14. J. C. Conrad, S. R. Ferreira, J. Yoshikawa, R. F Shepherd, B. Y. Ahn and J. A. Lewis, Curr. Opin. Colloid Interface Sci., 16, 71 (2011). https://doi.org/10.1016/j.cocis.2010.11.002
  15. B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers and J. A. Lewis, Science, 323, 1590 (2009). https://doi.org/10.1126/science.1168375
  16. C. Sun, T. Wu, R. Liu, B. Liang, Z. Tian, E. Zhang and M. Zhang, Food Hydrocolloids, 51, 512 (2015). https://doi.org/10.1016/j.foodhyd.2015.05.027
  17. A. Pasqua, M. Fleury, A. Brun, M. C. Cristiano and D. Cosco, Advances in Food Safety and Health, 6, 61 (2014).
  18. D. Xu, J. Zhang, Y. Cao, J. Wang and J. Xiao, LWTFood Sci. Technol., 66, 590 (2016).
  19. K. J. Sim, H. J. Youn, J. E. Ahn, J. G. Lee, H. Y. Lee and Y. H. Jo, J. Korea TAPPI, 46, 46 (2014).
  20. Y. D. Hazan, M. Thanert. M. Trunec and J. Misak, J. Eur. Ceram. Soc., 32, 1187 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.12.007