• Title/Summary/Keyword: Pore solution

Search Result 698, Processing Time 0.028 seconds

Fabrication of Nanometer-sized Pattern on PMMA Plate Using AAO Membrane As a Template for Nano Imprint Lithography (AAO 나노기공을 나노 임프린트 리소그래피의 형틀로 이용한 PMMA 나노패턴 형성 기술)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.420-425
    • /
    • 2008
  • PMMA light guiding plate with nano-sized pattern was fabricated using anodized aluminum oxide membrane as a template for nano imprint lithography. Nano-sized pore arrays were prepared by the self-organization processes of the anodic oxidation using the aluminum plate with 99.999% purity. Since the aluminum plate has a rough surface, the aluminum plate with thickness of 1mm was anodized after the pre-treatments of chemical polishing, and electrochemical polishing. The surface morphology of the alumina obtained by the first anodization process was controlled by the concentration of electrochemical solution during the first anodization. The surface morphology of the alumina was also changed according to temperature of the solution during chemical polishing performed after first anodization. The pore widening process was employed for obtaining the one-channel with flat surface and height of the channel because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. It is shown from SPM results that the nano-sized pattern on PMMA light guiding plate fabricated by nano imprint lithography method was well transferred from that of anodized aluminum oxide template.

Study of the Stability of Brass Coated on Steel Cords with pH and Applied Constant Potential Changes in Aqueous Solutions by AC Impedance Measurements (교류임피던스 측정에 의한 수용액에서 pH와 일정공급전위 변화에 따른 강철심에 도금된 놋쇠의 안정성 연구)

  • Ko, Young Chun;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.293-298
    • /
    • 1995
  • The stability of brass coated on steel cords with pH and applied constant potential changes in aqueous solution has been investigated by AC impedance measurements. In solutions of the constant pH, as a applied constant potential is shifted to positive potential, the coating pore resistance is reduced. The fact indicates that as a applied constant potential is shifted to positive potential, the brass coated is dissolved more in solution. The stability of brass coated on steel cords decrease in the order pH=7.1 > pH=4.0 > pH=10.0. The above results are demonstrated by the data of scanning of electronic microscopy(SEM)/energy dispersive spectrometer(EDS).

  • PDF

Process for the Preparation of Conducting Polymer Composites (II) : The Effect of Polymerization Parameters on Conductivity (전도성 고분자 복합체 제조를 위한 신합성 연구(II) : 중합변수에 따른 전도성 고분자 복합체의 전도도 변화)

  • Son, Suk-Hye;Pak, Young-Jun;Kim, Jung-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1061-1068
    • /
    • 1996
  • The conducting polymer composites were prepared by imbibing the porous particle wish the $FeCl_3$ oxidant solution, drying the imbibed porous particle, and imbibing again with pyrrole solution for polymerization to take place in the pore of porous particles. The effect of synthesis conditions on the conductivity of composite polymers were investigated. It was found that the conductivity of composite polymers was dependant on the concentration of pyrrole monomer, nature of the oxidants and solvents used for the oxidant and pyrrole, which influence the degree of penetration/distribution of polyprrole in the composite and reaction of dopant with pyrrole.

  • PDF

Evaluation of Organic Fouling Potential by Membrane Fouling Index (막오염 지수를 이용한 유기물에 의한 막오염 평가)

  • Kim, Hana;Park, Chanhyuk;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.140-144
    • /
    • 2006
  • This study was performed to investigate the effect of organic characteristics and feed water solution chemistry on membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI). Specifically, Aldrich humic acids (AHA) and Suwannee river humic acids (SHA) were used in SDI/MFI experiments. Higher SDI values were observed with increasing organic concentration. AHA with larger molecular weight (MW) and SUVA (${\approx}UV_{254}/TOC$) resulted in higher SDI values, compared to SHA. The feed solution chemistry (i.e, pH, ionic strength, and hardness) also affects SDI values to some degree. In particular, SDI increased with increasing hardness ($Ca^{2+}$) concentration for AHA. Unlike SDI, the MFI developed on the basis of particle cake filtration theory, was not accurately assessed due to internal fouling by organics such as pore adsorption and subsequent pore blocking.

Synthesis and characterization of microporous TS-1 zeolite(MFI) (Microporous TS-1 Zeolite(MFI)의 합성과 특성)

  • 강선명;이희수;김익진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • A microporous zeolite-type tianosilicate (TS-1), new catalysis elements, was synthesized by differents of the reactant solution pH. The range of reactant solution pH has from 10.0 to 12.4 TS-1 Zeolite (ETS-10), having a large pore (8~10 ${\AA}$), was synthesized at 10.4 of pH, since TS-1 Zeolite (ETS-4), having a small pore (3~5 ${\AA}$), was synthesized at 11.5 of pH. Also the two materials simultaneously existed at the intermediate pH. Crystallization, physico chemical characteristics of synthesized TS-1 Zeolite were investigated by XRD, XRF, SEM and FT-IR techniques.

  • PDF

Integrated Modeling of Chloride Binding Isotherm of Concrete Based on Physical and Chemical Mechanisms (물리화학적 메커니즘에 기이한 큰크리트의 염화물 흡착 등온에 대한 모델링)

  • Yoon, In-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.537-540
    • /
    • 2006
  • Over the past few decades, a considerable number of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in modeling of ionic flows. However, the majority of these researches have not dealt with the chloride binding isotherm based on the mechanism, although chloride binding capacity can significantly impact on the total service life of concrete under marine environment. The purpose of this study is to develop the model of chloride binding isotherm based on the individual mechanism. It is well known that chlorides ions in concrete can be present; free chlorides dissolved in the pore solution, chemical bound chlorides reacted with the hydration compounds of cement, and physical bound attracted to the surface of C-S-H grains. First, sub-model for water soluble chloride content is suggested as a function of pore solution and degree of saturation. Second, chemical model is suggested separately to estimate the response of binding capacity due to C-S-H and Friedel's salt. Finally, physical bound chloride content is estimated to consider a surface area of C-S-H nano-grains and the distance limited by the Van der Waals force. The new model of chloride binding isotherm suggested in this study is based on their intrinsic binding mechanisms and hydration reaction of concrete. Accordingly, it is possible to characterize chloride binding isotherm at the arbitrary stage of hydration time and arbitrary location from the surface of concrete. Comparative study with experimental data of published literature is accomplished to validity this model.

  • PDF

Selective Removal of Cr (VI) and Cr (III) in Aqueous Solution by Surface Modified Activated Carbon

  • Lee, Jeong-Min;Kim, Min-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.9 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • The adsorption and reduction of Cr (VI) to Cr (III) by surface modified activated carbon (AC) in an aqueous solution was studied. The effects of surface modifications on the properties of the carbons were investigated by the analysis of specific surface area, carbon surface pH, acid/base surface values and functional groups. In order to understand the Cr(VI) adsorption and reduction ratio from Cr(VI) to Cr(III), the Cr adsorption capacity of AC was also measured and discussed by using inductively coupled plasma and UV spectrophotometer. The modifications bring about substantial variation in the chemical properties whereas the physical properties such as specific surface area, pore volume and pore size distribution nearly were not changed. Total Cr adsorption efficiency of as-received activated carbon (R-AC) and nitric acid treated activated carbon (N1-AC and N2-AC) were recorded on 98.2, 99.7 and 100%. Cr(III) reduction efficiency of R-AC increased largely from 0.4% to 28.3% compared to N1-AC and N2-AC.

Removal of ciprofloxacin from aqueous solution by activated carbon prepared from orange peel using zinc chloride

  • Koklu, Rabia;Imamoglu, Mustafa
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.129-137
    • /
    • 2022
  • In this study, the removal of Ciprofloxacin (CPX) from aqueous solutions was investigated by a new activated carbon adsorbent prepared from orange peel (ACOP) with chemical activation using ZnCl2. The physicochemical properties of orange peel activated carbon were characterized by proximate and ultimate analysis, scanning electron microscopy, BET surface area determination and Fourier transformation infrared spectroscopic studies. According to Brunauer-Emmett-Teller isotherm and non-local-density functional theory, the cumulative surface area, pore volume and pore size of ACOP were determined as 1193 m2 g-1, 0.83 cc g-1 and 12.7 Å, respectively. The effects of contact time, pH, temperature and ACOP dose on the batch adsorption of CPX were studied. Adsorption equilibrium data of CPX with ACOP were found to be compatible with both the Langmuir and Freundlich isotherms. CPX adsorption capacity of ACOP was calculated as 181.8 mg g-1 using Langmuir isotherm. The CPX adsorption kinetics were found to be harmonious with the pseudo-second-order kinetic model. Conclusively, ACOP can be assessable as an effective adsorbent for the removal of ciprofloxacin (CPX) from aqueous solutions.

Preparation and Characterization of α-alumina Hollow Fiber Membrane (알루미나 중공사막 제조 및 특성 분석)

  • Che, Jin Woong;Lee, Hong Joo;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The alumina hollow fiber membranes were prepared by spinning and sintering a polymer solution containing suspended alumina powders. For determine pore structure of hollow fiber membranes formed by different solvent-nonsolvent interaction rate, dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) were prepared in dope solution by solvent, polyethersulfone (PESf) and polyvinylpyrrolidone (PVP) were used as a polymer binder and additive. The pore structure of hollow fiber membranes was characterized using scanning electron microscope (SEM). The alumina hollow fiber membranes prepared by DMSO, DMAc were had the asymmetric structure mixed sponge-like and finger-like morphology, while TEP solvent were had single sponge-like structure. The prepared hollow fiber membranes were analyzed gas permeation and mechanical strength experiment also. The hollow fiber membrane having single sponge-like structure was had high gas permeation performance. On the contrary to this, more finger-like morphology was less gas permeation performance.

Synthesis of Mesoporous TiO2 Thin Films with Polypyrrole Nanoparticles by Ultrasonic-induced Polymerization (초음파 중합에 의한 polypyrrole 나노입자를 함유하는 메조포러스 TiO2 박막의 합성)

  • Jang, Kwang-Suk;Cho, Sung-Ho;Song, Myung-Geun;Kim, Jong-Duk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.777-782
    • /
    • 2008
  • Using ultrasonic-induced polymerization of pyrrole, mesoporous $TiO_2$ thin film with polypyrrole nanoparticles was prepared. Polypyrrole nanoparticles were ultrasonically synthesized in the mother solution of mesoporous $TiO_2$ before spin-coating. The polypyrrole particles were well dispersed in the solution. After spin-coating and calcinations process, the nanocomposite films have well-organized pore channels without pore-collapse, and polypyrrole nanoparticles are well dispersed in mesoporous $TiO_2$ matrix. The pore size and light absorbance of the mesoporous nanocomposite thin films were controlled by using different template materials, and by using different amount of pyrrole monomer, respectively.