• Title/Summary/Keyword: Pore pressure dissipation

Search Result 107, Processing Time 0.035 seconds

Evaluation of Disturbance Effect of Penetrometer by Dissipation Tests (소산 실험을 이용한 관입 장비의 교란 효과 추정)

  • Yoon, Hyung-Koo;Hong, Sung-Jin;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.339-347
    • /
    • 2008
  • The penetration of the probe produces the excess pore pressure due to the disturbance. The objective of this study is to evaluate the disturbance zone by using the dissipation of the excess pore water pressure, which was generated due to the penetration of the penetrometer with different size. The CPT, DMT and FVP (Field Velocity Probe) are adopted for in-situ tests. The tests are carried out in the construction site of north container pier of Busan new port, Korea where is accelerating the consolidation settlement using plastic board drains (PBD) and surcharges by crushed gravels. The coefficient of consolidation $(C_h)$ and soil properties are deduced by the laboratory test. The in-site tests are performed after the predrilling the surcharge zone at the point of 90% degree of consolidation. To minimize the penetration effect, the horizontal distance between penetration tests is 3m, the change of the pore pressure is monitored at the fixed depth of 24m. The coefficient of consolidation $(C_h)$ and the $t_{50}s$ are calculated based on the laboratory test and the in-situ data, respectively. The equvalent radi based on the $t_{50}$ shows that the FVP and the DMT produce the smallest and the greatest equivalent radi, respectively.

Staged Finite Element Modeling with Coupled Seepage and Stress Analysis

  • Lee, Jae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.703-714
    • /
    • 2010
  • This paper proposes an approach for staged finite element modeling with coupled seepage and stress analysis. The stage modeling is based on the predefined inter-relationship between the base model and the unit stage models. A unit stage constitutes a complete finite element model, of which the geometries and attributes are subject to changes from stage to stage. The seepage analysis precedes the mechanical stress analysis at every stage. Division of the wet and dry zone and the pore pressures are evaluated from the seepage analysis and used in determining input data for the stress analysis. The results of the stress analysis may also be associated with the pore water pressures. For consolidation analysis, the pore pressure and the displacement variables are mixed in a coupled matrix equation. The time marching solution produces the dissipation of excess pore pressure and variation of stresses with passage of time. For undrained analysis, the excess pore pressures are computed from the stress increment due to loading applied in the unit stage and are used in revising the hydraulic head. The solution results of a unit stage are inherited and accumulated to the subsequent stages through the relationship of the base model and the individual unit stages. Implementation of the proposed approach is outlined on the basis of the core procedures, and numerical examples are presented for demonstration of its application.

Finite Element Analysis of Piezocone Test II (피에조콘 시험의 유한요소 해석 II)

  • 김대규;김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.191-199
    • /
    • 2000
  • In this research, the finite element analysis of piezocone penetration and dissipation tests has been conducted using the anisotropic elastoplastic-viscoplastic bounding surface model, virtual work equation, and theory of mixtures formulated in the Up[dated Lagrangian reference frame for the large deformation and finite strain nature of piezocone penetration. The formulated equations have been implemented into a finite element program. The cone resistance, excess pore water pressure, and dissipation of excess pore water pressure from the finite element analysis have been compared and investigated. An effective simulation could be performed with the use of the anisotropic and viscous soil model. The finite element formulations and the results are described in part 'I' and part 'II' respectively.

  • PDF

The Application of Piezocone Penetration Test at Inchon International Airport (인천국제공항지역의 피에조콘조사와 결과의 적용)

  • 김종국;성기광;김학중;김영웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.115-123
    • /
    • 2000
  • Piezocone Penetration Test has been performed in the soft ground over the site preparation area at Inchon International Airport(IIA). With the pore pressure dissipation test results, the changes in the permeability and the coefficient of consolidation in clayey soil were checked and the differences of the undrained shear stength verified the soft ground improvement effect from vane test and piezocone test both before and after the improvement. From the results, thin sand seam was found and this caused a big difference in the coefficient of permeability and consolidation. The coefficient of consolidation was high in the upper marine deposit and relatively low in lower marine deposit. It was found that the reduction of void ratio by preloading resulted in the reduction of coefficient of consolidation after the ground improvement. In addition, there were some variations of undrained shear strength when the number of 15 or 18 was used as the coefficient of piezocone(Nkt). However, when the average value of undrained shear strength calculated using Nkt=10 was applied, the result indicated the similar average value with the result of vane test and the increasing rate of strength( Δsu/Δ$\sigma$≒0.38) also showed the similar distribution.

  • PDF

Comparison of Tn-situ Characteristics of Soft Deposits Using Piezocone and Dilatometer (피에조 콘과 딜라토메터 시험을 이용한 연약지반의 현장특성 비교)

  • 김영상;이승래;김동수
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.45-56
    • /
    • 1998
  • In order to select a proper ground improvement technology and to assess the quality and rate of improvement in the soft deposits. it is essential to characterize in-situ properties of the soft marine clay layer that may have many thin silt or sand seams. In this paper, both piezocone and flat dilatometer tests were performed to characterize in situ properties of a marine clay. Both tests provided quite similar site classifications, and in both tests the penetration pore water pressure was the better indicator for the classification of marine clay layer, especially in which sand or silt seams are frequently interbedded. Undrained strengths determined by both the cone tip resistance and the excess pore water pressure measured from piezocone were very similar in clayey soil layers. And the untrained strength determined by dilatometer had an approximately average value of undiained strengths obtained from piezocone. In addition, the theoretical time factor that can consider pore pressure dissipation effect during cone penetration may provide a reliable estimation of the coefficient of consolidation, especially for a coastal site which includes many silt or sand fractions or seams.

  • PDF

Evaluation of Under-consolidation State in the Rapidly Deposited Ground (급속퇴적지반의 미압밀상태 평가)

  • 김현태;홍병만;백경종;김상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.89-98
    • /
    • 2003
  • A 5∼12m thick tideland has been created in front of a new sea-dyke due to the rapid sedimentation occurring for 22 years. It is confirmed from theoretical analysis and soil tests that the deposit is in under-consolidation state. An analysis shows that when the average sedimentation rate is over 1-5cm/year for a soil with $c_v$=0.0005-0.001$cm^2$/s, excess pore water pressure exists in the deposit. It is known that the lower sedimentation rate than average in the initial deposition stage results in lower dissipation of excess pore pressure and vice versa. It is emphasized that under-consolidation behavior should be taken account in settlement analysis because structures founded on such deposits give higher settlements.

Numerical Analysis on Consolidation of Soft Clay by Sand Drain with Heat Injection (수치해석을 통한 샌드드레인과 열주입에 의한 연약지반의 압밀 해석)

  • Koy, Channarith;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.45-57
    • /
    • 2017
  • Temperature change affects consolidation behavior of soft clays. The increase of temperature in soft clays induces the increase of pore water pressure. The dissipation of the excess pore water pressure decreases volume and void ratio. Also, the consolidation rate is accelerated by high temperature which induces the decrease of viscosity of pore fluid. The effects of temperature on the consolidation behavior such as consolidation settlement, consolidation time, and pore water pressure were investigated in this study. A numerical analysis of hydro-mechanical (HM) and thermo-hydro-mechanical (THM) behavior was performed. The combination of heat injection and sand drain for consolidating the soft ground, with varying temperature (40 and $60^{\circ}C$) and sand drain diameter (40, 60, and 80 mm), was considered. The results show that the temperature inside soil specimen increases with the increase of the temperature of heating source and the diameter of sand drain. Moreover, the heat injection increases the excess pore water pressure and, accordingly, induces additional settlement in overconsolidated (OC) state and reduces the consolidation time in normally consolidated (NC) state.

Numerical Analysis on Consolidation of Normally Consolidated Clays with 2-Dimensional Drainage (정규 압밀 점성토의 2차원 배수 압밀 거동에 대한 수치해석)

  • 정영훈;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.669-676
    • /
    • 2000
  • The estimation of consolidation rate is one of the important factors in the construction on soft clayey deposits. A number of researches are carried out to predict the consolidation behavior in field, however, most of the results show the discrepancies between the prediction and observation. This paper analyzes consolidation behavior of normally consolidated clay in K/sub o/ condition with 2-dimensional drainage by use of the numerical methods. Elastic and elastic-plastic finite element analyses are compared in terms of the dissipation of excess pore pressure. These results are also compared with Terzaghi-Rendulic's equation that is implemented by finite difference method. The consolidation time calculated by using elastic model is found to be similar to the result of Terzaghi-Rendulic's equation. The consolidation predicted by MCC model takes more time than other cases. Initial increase of excess pore pressure in radial drainage can be shown, however, this phenomenon does not have a significant effect on tile final consolidation time.

  • PDF

Application of Optimum Design Technique in Determining the Coefficient of Consolidation Using Piezocone Test (피에조 콘 시험을 이용정회원, 한국과학기술원 토목공학과 부교수, 정회원, 한국과학기술원 토목공학과 박사 후 과정한 망일계수 결정시 최적화 기법의 적용)

  • Kim, Yeong-Sang;Lee, Seung-Rae;Kim, Yun-Tae
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.95-108
    • /
    • 1997
  • For normally consolidated clay, several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation However, depending on the assumptions and analytical techniques, it could considerably vary even for a specific degree of consolidation. In this paper, a method is proposed to determine a consistent coefficient of consolidation over all ranges of degree of consolidation by applying the concept of the Optimum Design Technique. The initial excess pore pressure distribution is assumed to be obtainable by the successive spherical cavity expansion theory. The dissipation of pore pressure is simulated by means of two dimensional linear-uncoupled axisymmetric consolidation analysis. The minimization of the differences between the measured and the predicted excess pore pressures was carried by BFGS unconstrained optimum design algorithm with one dimensional golden section search technique. By analyzing numerical and real field examples, it can be found that the adopted optimum technique gives a consistent and convergent results.

  • PDF

Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data (파랑에 의한 방파제 케이슨 침하 경향 및 원인 분석: 침하 계측자료를 중심으로)

  • Kim, Tae-Hyung;Nam, Jung-Man;Kim, In-Sok;Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.27-40
    • /
    • 2014
  • So far, studies on the settlement of breakwater have mainly been conducted through numerical model tests focusing on an analysis or through the laboratory wave tank tests using a scaled model. There has not been a study on the settlement that is measured in an actual breakwater structure. This study analyzed the data of settlement that has been measured in an actual caisson breakwater for a long time and the characteristics and causes of wave-induced settlement in the caisson (including beneath ground), based on qualitative aspect, were examined. The analysis revealed that wave clearly has an effect on the settlement in caisson, especially in the condition of high wave such as typhoon. Caisson settlement is caused by the liquefaction of ground, which is due to the increase of excess pore pressure, the combination of oscillatory excess pore pressure and residual excess pore water pressure, and the solidification process of ground due to dissipation of the accumulated excess pore pressure. The behavior of excess pore pressure in the ground beneath the caisson is entirely governed by the behavior of the caisson. Ground that has gone through solidification is not likely to go through liquefaction in a similar or a smaller wave condition and consequently, the possibility of settlement is reduced.