• Title/Summary/Keyword: Pore Size distribution

Search Result 497, Processing Time 0.026 seconds

Preparation of Cross-sectional Specimen for High Resolution Observation of Coating Structure and Visualization of Styrene/butadiene Latex Binder (고배율 도공층 구조 및 S/B latex 분포 분석을 위한 도공층 횡단면 제작)

  • Kim, Chae-Hoon;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • To characterize the coating structure, diverse methods such as mercury intrusion, nitrogen adsorption and oil absorption methods have been developed and widely employed. These indirect techniques, however, have some limitation to explain the actual coating structure. Recently microscopic observation methods have been tried for analyzing structural characteristics of coating layers. Preparation of the undamaged cross section of a coating layer is essential for obtaining high quality image for analysis. In this study, distortion-free cross-section of the coating layer was prepared using a grinding and polishing technique. The coated paper was embedded in epoxy resin and cured. After curing the resin block it was ground with abrasive papers and then polished with diamond particle suspension and nylon cloth. Polished coating layer was sufficient enough to obtain undamaged cross sectional images with scanning electron microscope under backscattered electron image mode. In addition, the SEM images allowed distinction of the coating layer components. Also S/B latex film formed between pigment particles was visualized by osmium tetroxide staining. Pore size distribution and pore orientation were evaluated by image analysis from SEM cross-sectional images.

Poly(Imide) Separator Functionalized by Melamine Phosphonic Acid for Regulating Structural and Thermal Stabilities of Lithiumion Batteries

  • Ye Jin Jeon;Juhwi Park;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.365-372
    • /
    • 2024
  • As the energy density of lithium-ion batteries (LIBs) continues to increase, various separators are being developed to with the aim of improving the safety performance. Although poly(imide) (PI)-based separators are widely used, it is difficult to control their pore size and distribution, and this may further increase the risk associated. Herein, a melamine phosphonic acid (MP)-coated PI separator that can effectively control the pore structure of the substrate is suggested as a remedy. After the MP material is embedded into the PI separator with a simple one-step casting process, it effectively clogs the large pores of the PI separator, preventing the occurrence of internal short circuits during charging. It is anticipated that the MP material can also suppress rapid thermal runaway upon cycling due to its ability to reduce the internal temperature of the LIB cell caused by the desirable endothermic behavior around 300℃. According to experiments, the MP-coated PI separator not only decreases the thermal shrinkage rate better than commercial poly(ethylene) (PE) separators but also exhibits a desirable Gurley number (109.6 s/100 cc) and electrolyte uptake rate (240%), which is unique. The proposed separator is electrochemically stable in the range 0.0-5.0 V (vs. Li/Li+), which is the typical working potential of conventional electrode materials. In practice, the MP-coated PI separator exhibits stable cycling performance in a graphite-LiNi0.83Co0.10Mn0.07O2 full cell without an internal short circuit (retention: 90.3%).

Characteristics of Soil Conditioner Pellets Fabricated by Self-propagating Combustion Methods Using Coal Refuse (석탄폐석의 자열소성을 이용한 토양개량용 펠릿의 제조와 특성)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Nam, Chul-Woo;Park, Chong-Lyuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.379-386
    • /
    • 2008
  • Calcined clay granules (pellet) have been used as a soil conditioner. The space among the pellets can secure drainage of water in soil and, simultaneously, can keep water for plants in the inner pore of that. However, the usage of the pellet has been restrained because fabrication of that requires a high energy and cost for heating over the temperate of $1000^{\circ}C$. Recently, SCS(Self-propagating Combustion and Sintering) method was developed and this method use the combustion energy of the preliminary mixed combustible. The SCS method is suitable to fabrication of small porous aggregate and requires a very low cost. This research applied the SCS method to coal refuses for fabrication of soil conditioner pellets. The coal refuses were pulverized under the size of $100{\mu}m$ and the pulverized powders were pelletized to the size of 4~6mm. The pellets were heated at the temperature of $1200^{\circ}C$ in the SCS furnace that was specially prepared for this research. Characteristics of the pellets were investigated and were compared with that of ordinary calcined clay pellet of kaolin; porosity, pore size distribution, bulk density, pH and etc.. Characteristics of the moisture retention in the pellets were measured by the centrifugal method: ASTM D425-88. The pellets of the coal refuses showed the higher values of the field capacity and the plant-available water than that of kaolin pellet. These results suggest the very low cost process that can utilize the coal refuses and can fabricate the lightweight porous soil conditioner of the very high plant-available water.

Relationships between Gas Hydrate Occurrence Types and Sediment Characteristics in the Ulleung Basin, East Sea (동해 울릉분지의 가스 하이드레이트 산출형태와 퇴적물 특성의 관계)

  • Kim, Dae-Ha;Bahk, Jang-Jun;Lee, Jin-Heuck;Ryu, Byong-Jae;Kim, Ji-Hoon;Chun, Jong-Hwa;Torres, Marta E.;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.397-406
    • /
    • 2012
  • During the 2nd Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) in 2010, gas-hydrate-bearing sediment cores were recovered at 10 drill sites. Base, on Infrared (IR) thermal image and grain-size analysis of the cores, three distinct types of gas hydrate are classified: Type I (fracture-filling in mud layers), Type II (disseminated in mud layers), and Type III (pore-filling in sand layers). Types I and II gas hydrates occur in mud as discrete veins, nodules or disseminated particles. Type III fills the pore spaces of the sand layers encased in mud layers. In this case, the sand content of hosting sediments shows a general linear relationship with gas hydrate saturation. The degrees of temperature anomalies (${\Delta}T$) from IR images generally increase with gas hydrate saturation regardless of gas hydrate occurrence types. Type I is dominantly found in the sites where seismic profiles delineate chimney structures, whereas Type II where the drill cores are composed almost of mud layers. Type III was mainly recovered from the sites where hemipelagic muds are frequently intercalated with turbidite sand layers. Our results indicate that gas hydrate occurrence is closely related to sedimentological characteristic of gas hydrate-bearing sediments, that is, grain size distribution.

The Comparison of Sintering Characteristics between the PVA-Al(III) Complex added $UO_2$Pellet and AlOOH added $UO_2$pellet (PVA-Al(III) 착물 첨가 $UO_2$소결체와 AlOOH 첨가 $UO_2$소결체의 소결 특성 비교)

  • Lee, Sin-Yeong;Yu, Ho-Sik;Lee, Seung-Jae;Kim, Hyeong-Su;Bae, Gi-Gwang
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • The sintering characteristics of PVA-Al(III) complex added $UO_2$ pellet and AlOOH added $UO_2$pellet were compared. The major phase of PVA-Al(III) complex and AlOOH decomposed at $1000^{\circ}C$ in $H_2$atmosphere was $\theta-Al_2O_3$. Compared with the apparent density of pure $UO_2$, that of AlOOH added $UO_2$ powder was higher but that of PVA-Al(III) complex was lower. the densification of AlOOH added $UO_2$ pellet was initiated at about $800^{\circ}C$, the densification of PVA-Al(III) complex added $UO_2$ pellet was initiated at about $900^{\circ}C$ respectively. In a view of pore size distribution, the PVA-Al(III) complex added $UO_2$ pellet appeared as monomodal type, whereas the AlOOH added $UO_2$ pellet appeared as bimodal type. The grain size of AlOOH added $UO_2$ pellet was about $13\mu\textrm{m}$ but the grain size of PVA-Al(III) complex added $UO_2$ pellet was increased up to about $36\mu\textrm{m}$.

  • PDF

Effect of Green Microstructure on Sintered Microstructure and Mechanical Properties of Reaction-Bonded Silicon Carbide (성형미세구조가 반응소결 탄화규소체의 소결미세구조 및 기계적 특성에 미치는 영향)

  • 박현철;김재원;백운규;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.97-105
    • /
    • 1999
  • In the binary system of SiC and carbon, porosity and pore size distribution of green body was controlled by varying pH, by the addition of polyelectrolyte dispersants, and by using different particle size of starting powders. The preforms having different green microstructure were fabricated by slip casting from suspensions having different dispersion condition. The reaction bonding process was carried out for these preforms. The condition of reaction bonding was 1600$^{\circ}C$ and 20 min. under vacuum atmosphere. The analyses of optical and SEM were studied to investigate the effect of green microstructure on that of reaction bonded silicon carbide and subsequently the mechanical properties of sintered body was investigated. Different green microstructures were obtained from suspensions having different dispersion condition. It was found that the pore size could be remarkably reduced for a fine SiC(0.5$\mu\textrm{m}$). The bimodal microstructure was not found in the present study, which is frequently observed in the typical reaction bonded silicon carbide. It is considered that the ratio between SiC and C was responsible for the formation of bimodal microstructure. For the preform fabricated from the well dispersed suspension, the 3-point bending strength of reaction-bonded silicon carbide was 310${\pm}$40 MPa compared to the specimen fabricated from relatively agglomerated particles having lower value 260${\pm}$MPa.

  • PDF

Properties of Porous Silver with Polysiloxane Addition (다공성 은의 폴리실록센 첨가에 따른 물성 변화)

  • Kim, Eun-seok;Kim, Ik-gyu;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.603-611
    • /
    • 2020
  • A porous material which can contain liquid perfume was manufactured by adding 1~4 wt% of polysiloxane into a composite containing 20 ㎛ Ag powder and 30 wt% of 53 ㎛ salt, sintering for 60 min at 750℃, and melting salt selectively. The changes in pore, hardness, and microstructure were confirmed according to the polysiloxane content both before and after sintering. The manufactured silver liquid container was formed with open pores both before and after sintering, and the container shrunk by 2~7 % in both perpendicular and parallel directions after sintering. Vickers hardness was increased after sintering and was doubled when 2 wt% of polysiloxane was added. In case of the microstructure, the surface condition of the silver liquid container became darker according to the polysiloxane content, and the pore size was decreased from 50 ㎛ to under 10 ㎛. The composition distribution result revealed an even distribution when 2 wt% of polysiloxane was added but uneven distribution when over 3 wt% of polysiloxane was added due to decreased hardness by cluster. Therefore, the addition of an appropriate amount of 2 wt% polysiloxane reinforced the porous silver with open pores to offer application for jewelry usage.

Effect of Soil Structure on Soil-Water Characteristic in Unsaturated Soil (불포화토에서 흙의 구조가 흙-함수특성에 미치는 영향)

  • Hwang, Woong-Ki;Kang, Ki-Min;Kim, Tae-Hyung;Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.33-42
    • /
    • 2012
  • The purpose of this study is to determine the effect of soil grain size and its distribution on soil-water characteristic. To do this, soil-water characteristic tests were conducted on Saemangeum silt using the axis translation technique. For comparison, the test was also conducted on Jumunjin sand. Using the test results, the soil-water characteristic curves (SWCCs) of Saemangeum silt and Jumunjin sand were predicted by Van Genuchten model. By comparison and analysis between two SWCCs, the silt shows higher values of matric suction, water content, and air entry value than the sand. On the other hand, the sand has higher values of Van Genuchten model parameters of ${\alpha}$, $n$, $m$ than the silt. It indicates that the SWCC is significantly dependent on the structure of soils. In other words, if a soil has relatively high grain size and poor grain size distribution curve, the values of saturated volumetric water content, residual volumetric water content, and air entry value are small, and the variation of volumetric water content is high in accordance with the matric suction variation, and consequently it shows a narrow range of funicular region.

Effect of calcination temperature on mechanical properties of spinel-glass dental composites (하소온도에 따른 인공치관용 스피넬-유리 복합체의 기계적 특성)

  • 이득용;이준강;김대준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.234-239
    • /
    • 2002
  • The spinel was calcined at temperatures in the range of $1000^{\circ}C$ to $1300^{\circ}C$ with $100^{\circ}C$ interval to evaluate the effect of calcination temperature on mechanical properties of spinel-glass dental composites. Although the average particle size of spinel calcined at temperatures from $1000^{\circ}C$ to $1200^{\circ}C$ was within 2.8~3.0 $\mu\textrm{m}$, the spinel calcined at $1300^{\circ}C$ was 4.66 $\mu\textrm{m}$ due to abnormal grain growth. Shrinkage and pore size of the spinel preform decreased and increased, respectively, as calcination temperature increased, indicating that the calcination temperature was significant to the powder compaction and the densification of the composites as a result of particle size and distribution. The optimum strength and the fracture toughness of the composite calcined at $1200^{\circ}C$ were 284$\pm$40 MPa, 2.5$\pm$0.1 MPaㆍ$m^{1/2}$ respectively. Optical experimental results showed that transmittance of the spinel-glass composite in the visible region was twice higher than that of the alumina-glass composite, suggesting that the spinel-glass composites possessed better aesthetic properties for all-ceramic dental crown application.

Preparation and Application of Charcoal-Encapsulated Methyl Silica Microcapsules (활성탄을 함유한 메틸실리카 마이크로캡슐의 제조 및 응용)

  • Ahn, Bok-Yeop;Lee, Yu-Mi;Ham, Myung-Kyung;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.199-206
    • /
    • 2003
  • The charcoal-encapsulated methyl silica microcapsules were prepared by a O/W microemulsion sol-gel method, and the adsorption properties on aquatic humic acid were investigated. The capsules prepared were spherical, $100{\sim}1000{\mu}m$ in size. The size distribution was controllable by adjusting the size of charcoal powder, charcoal/methyl silica ratio, and agitating speed in O/W sol-gel process. Adsorption efficiency of charcoal for aquatic humic acid was decreased after encapsulation by methyl silica shell. The decreased adsorption efficiency can be dependent on the decrease of the BET surface area and pore volume after encapsulation. Diffusion properties of humic acid through the capsule shell also played an important role on adsorption efficiency. Therefore, the reasonable target pollutants for the capsules can be VOC or odor molecules which can overcome diffusion barrier through shell of capsules in air condition. Functionalization methods for the charcoal-encapsulated $CH_3(SiO)_n$ microcapsules by incorporation of $TiO_3$ as a phtocatalytic function and by incorporation of inorganic pigment as a color function were also investigated. $TiO_2$ coating properties were controllable by adjusting pH, temperature, and the concentration of $TiOSO_4$. In XRD measurement, the crystal form of the coated $TiO_2$ was anatase. For the colorization of the capsules, inorganic pigments were more efficient than organic dyes, and various color was introduced to the capsules using inorganic pigments.

  • PDF