• Title/Summary/Keyword: Pore Control

Search Result 454, Processing Time 0.02 seconds

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage (지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구)

  • Baek, Seung Han;Lee, Sang-Woo;Lee, Woo-Chun;Yun, Seong-Taek;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.409-425
    • /
    • 2021
  • Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.

Rumen Fermentation was Changed by Feed Inoculation Method in In Vitro (사료 접종 방법에 의한 in vitro 반추위 발효 상성 변화)

  • Yoo, Dae-Kyum;Moon, Joon-Beom;Kim, Han-Been;Yang, Sung-Jae;Park, Joong-Kook;Lee, Se-Young;Seo, Ja-Kyeom
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.30 no.3
    • /
    • pp.111-120
    • /
    • 2019
  • The objective of this study was to investigate the effect of different feed inoculation method on rumen fermentation in an in vitro. Three experimental treatments were used: control (CON, direct dispersion of feed (2 g) in rumen fluid), combinations of direct dispersion (1 g) and nylon bag (DNB, pore size: 50 ㎛, 1 g), and nylon bag (NB, 2 g). An in vitro fermentation experiment was carried out using strained rumen fluid for 48 h incubation time and timothy was used as a substrate. At the end of the incubation, in vitro dry matter digestibility (IVDMD), in vitro neutral detergent fiber digestibility (IVNDFD), pH, volatile fatty acids (VFA), ammonia nitrogen (NH3-N), and microbial community were evaluated and gas production was estimated at 3, 6, 12, 24, 48 h incubation periods. Gas production was higher in CON than DNB and NB at 6 and 12 h incubation time (p<0.01). There were no differences in final gas production, pH, NH3-N concentration, total VFA production, and VFA profiles among treatments. The IVDMD was lowest in CON (p<0.01) but the IVNDFD was not differed by feed distribution methods. There were no significant differences in general bacteria and fungi. Protozoa count was highest in NB treatment among treatments (p<0.01). The abundance of cellulolytic bacteria, Ruminococcus flavefaciens and Fibrobacter succinogenes, was highest in the CON among treatments (p<0.01).

Anti-oxidation, anti-inflammation, anti-wrinkle, and pore-tightening effects of phenolic compounds from Aeonium sedifolium leaves (소인제(Aeonium sedifolium) 잎 유래 phenolic 성분의 항산화, 피부주름생성 억제, 항염증 및 모공 수축 효과)

  • Jung-In Kim;Min-Jae Kim;Ha-Gyeong Jo;Da-Eun Jeong;Hye-Jin Park;Young-Je Cho
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.347-357
    • /
    • 2023
  • The succulent plant Aeonium sedifolium leaves contain several compounds that are of interest for their cosmetic uses on the skin. This study measured the inhibitory effects of enzyme production and antioxidant, astringent effects and skin wrinkles using Aeonium sedifolium leaves (ASL). The total phenolics compounds (TPC) content of ASL under optimal extraction conditions was 34.49 mg/g for hot water extract (ASLW) and 61.64 mg/g for 50% ethanol extract (ASLE). The ASLW and ASLE extracts were freeze-dried, powdered, and used as solids. TPC content, 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, and 2,2'-azinobis (3-ethylben-zothiazoline 6-sulfonate) (ABTS) radical inhibition of the ASL phenolics were tested. The DPPH radical scavenging activities of ASLW and ASLE were tested at a TPC of 100 ㎍/mL. ABTS radical inhibition showed antioxidant activity of 100.00% in ASLW and ASLE, and the antioxidant protection factor of ASLW and ASLE was 1.07 and 1.22, respectively. The thiobarbituric acid-reactive substance (TBARS) inhibitory activity of ASLW and ASLE was 77.00%. The elastase inhibitory activity of ASLE was 69.03%, and collagenase inhibition activity for ASLW and ASLE was 29.82% and 54.76%, respectively. The astringent effect of ASLE was 89.82% at a TPC of 200 ㎍/mL. Thus, we concluded that ASL has the potential as a functional cosmetic ingredient with anti-aging effects on the skin.

The Hardness Water Production By RO/NF/ED Linking Process From Deep Seawater (RO/NF/ED 연계 공정에 의한 고경도 담수 제조)

  • Moon, Deok-Soo;Kim, Kwang Soo;Gi, Ho;Choi, Mi Yeon;Jung, Hyun Ji;Kim, Hyun Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.227-238
    • /
    • 2013
  • The purpose of this study is to develop a process technology to produce high hardness drinking water which meet drinking water standard, remaining useful minerals like magnesium and calcium in the seawater desalination process while removing the sulfate ions and chloride ions. Seawater have been separated the concentrated seawater and desalted seawater by passing on Reverse Osmosis membrane (RO). Using Nano-filtration membrane (NF), We were prepared primary mineral concentrated water that sodium chloride were not removed. By the operation of electro-dialysis (ED) having ion exchange membrane, we were prepared concentrated mineral water (Mineral enriched desalted water) which the sodium chloride is removed. We have produced the high hardness water to meet the drinking water quality standards by diluting the mineral enriched desalted water with deionized water by RO. Reverse osmosis membranes (RO) can separate dissolved material and freshwater from seawater (deep seawater). The desalination water throughout the second reverse osmosis membrane was completely removed dissolved substances, which dissolved components was removed more than 99.9%, its the hardness concentration was 1 mg/L or less and its chloride concentration was 2.3 mg/L. Since the nano-filtration membrane pore size is $10^{-9}$ m, 50% of magnesium ions and calcium ions can not pass through the nano-filtration membrane, while more than 95% of sodium ions and chloride ions can pass through NF membrane. Nano-filtration membrane could be separated salt components like sodium ion and chloride ions and hardness ingredients like magnesium ions and calcium ions, but their separation was not perfect. Electric dialysis membrane system can be separated single charged ions (like sodium and chloride ions) and double charged ions (like magnesium and calcium ions) depending on its electrical conductivity. Above electrical conductivity 20mS/cm, hardness components (like magnesium and calcium ions) did not removed, on the other hand salt ingredients like sodium and chloride ions was removed continuously. Thus, we were able to concentrate hardness components (like magnesium and calcium ions) using nano-filtration membrane, also could be separated salts ingredients from the hardness concentration water using electrical dialysis membrane system. Finally, we were able to produce a highly concentrated mineral water removed chloride ions, which hardness concentration was 12,600 mg/L and chloride concentration was 2,446 mg/L. By diluting 10 times these high mineral water with secondary RO (Reverse Osmosis) desalination water, we could produce high mineral water suitable for drinking water standards, which chloride concentration was 244 mg/L at the same time hardness concentration 1,260 mg/L. Using the linked process with reverse osmosis (RO)/nano filteration (NF)/electric dialysis (ED), it could be concentrated hardness components like magnesium ions and calcium ions while at the same time removing salt ingredients like chloride ions and sodium ion without heating seawater. Thus, using only membrane as RO, NF and ED without heating seawater, it was possible to produce drinking water containing high hardness suitable for drinking water standard while reducing the energy required to evaporation.