• Title/Summary/Keyword: Porcine somatic cells

Search Result 65, Processing Time 0.029 seconds

Effects of Recipient Oocytes and Donor Cells Condition on in Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (산양의 이종간 핵이식에 있어서 수핵난자에 따른 공여세포의 조건이 핵이식란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS, and primary fibroblast cultures were established in TCM-199 with 10% FBS. After maturation, expanded cumulus cells were removed by vigorous pipetting in the presence of 0.3% hyaluronidase. The matured oocytes were dipped in D-PBS plus 10% FBS+7.5 $\mu\textrm{g}$/ml cytochalasin B and 0.05 M sucrose. The reconstructed oocytes were electrically fused with donor cells in 0.3 M mannitol fusion medium. After the electofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. On the other hand, the NT embryos with porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6∼8 day at $39^{\circ}C, 5% CO_2$ in air. In caprine-bovine NT embryos, the cleavage(2-cell) rate was 36.8% in confluence and 43.8% in serum starvation. The developmental rate of morula- and blastocyst-stage embryos was 0.0% in confluence and 18.8% in serum starvation. In caprine-porcine NT embryos, the cleavage(2-cell) rate was 76.7% in confluence and 66.7% in serum starvation. The developmental rate of morula and blastocyst stage embryos was 3.3% in confluence and 3.0% in serum starvation, and no significant difference was observed in synchronization treatment between donor cells. In caprine-bovine NT embryos, the cleavage(2-cell) rate of cultured donor cells was 30.8% and 17.6% in 5∼9 and 10∼14 passage(P<0.05). The developmental rate of morula and blastocyst stage embryos were significantly higher(P<0.05) in 5∼9 passage(23.1%) than in 10∼14 passage(0.0%) of cultured donor cells. In caprine-porcine NT embryos, the cleavage rate was significantly higher(P<0.05) in 5∼9 passage(86.7%) than in 10∼14 passage(50.0%) of cultured donor cells. The developmental rate of morula and blastocyst stage embryos were 3.3 and 0.0% in 5∼9 and 10∼14와 passage of cultured donor cells. In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer, 33.9% in in vitro fertilization and 28.1% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than in vitro fertiltzation(26.9%) and parthenotes(37.4%).

Establishment of In-Vitro Culture System for Enhancing Production of Somatic Cell Nuclear Transfer (SCNT) Blastocysts with High Performance in the Colony Formation and Formation of Colonies Derived from SCNT Blastocysts in Pigs

  • Han, Na Rae;Baek, Song;Lee, Yongjin;Lee, Joohyeong;Yun, Jung Im;Lee, Eunsong;Lee, Seung Tae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.130-138
    • /
    • 2019
  • Although somatic cell nuclear transfer (SCNT)-derived embryonic stem cells (ESCs) in pigs have great potential, their use is limited because the establishment efficiency of ESCs is extremely low. Accordingly, we tried to develop in-vitro culture system stimulating production of SCNT blastocysts with high performance in the colony formation and formation of colonies derived from SCNT blastocysts for enhancing production efficiency of porcine ESCs. For these, SCNT blastocysts produced in various types of embryo culture medium were cultured in different ESC culture medium and optimal culture medium was determined by comparing colony formation efficiency. As the results, ICM of porcine SCNT blastocysts produced through sequential culture of porcine SCNT embryos in the modified porcine zygote medium (PZM)-5 and the PZM-5F showed the best formation efficiency of colonies in α-MEM-based medium. In conclusion, appropriate combination of the embryo culture medium and ESC culture medium will greatly contribute to successful establishment of ESCs derived from SCNT embryos.

Effect of Activation Method and Culture Medium on the Development of Porcine Nuclear Transfer Embryo using Fetal Fibroblast

  • Im, Gi-Sun;Yang, Byoung-Chul;Park, Jin-Ki;Kim, Hyun-Ju;Chang, Won-Kyung;R. S. Prather;B. N. Day
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.66-66
    • /
    • 2001
  • Since the first birth of pig derived from embryonic cells by nuclear transfer, many researches to produce cloned pig have been carried out. Recently, two reports about the birth of somatic cell cloned pigs using in vivo oocytes and also Betthauser et al. (2000) reported the birth of somatic cell cloned pigs using in vitro oocytes. So here we investigated the effect of activation method and culture medium on in vitro development of porcine nuclear transfer embryo using fetal fibroblast. Oocytes derived from slaughter house obtained ovaries were matured for 42 to 44 h in TCM 199. Matured oocytes were denuded using 0.1% hyaluronidase and then Oocytes with the first polar body were used for enucleation by aspirating the first polar body and adjacent cytoplasm in TCM 199 supplemented with 7.5 $\mu\textrm{g}$ cytochalasin B. Petal fibroblast cells were prepared from 35 days old fetus. To be used as donor cells, fetal fibroblast cells were serum starved for 3 to 5 days and then isolated into single co:1 by trypsinization. Nuclear transfer embryos were fused using 2 times 1.25㎸ for 30$mutextrm{s}$. Fused NT embryos were activated with calcium ionophore (CI) and 6-dimethyl-aminopurine (6-DMAP). Activated oocytes were cultured in NCSU 23 or BECM 3 for 6 days. There was no significant difference between chemical activation and no chemical activation for blastocyst development rate(11.6 vs. 14.8%). However, cell number was significantly higher when NT embryos were activated with CI and 6-DMAP (31.2 vs. 22.6). When NT embryos were cultured in NCSU 23 or BECM 3, blastocyst development rate was 16.4 and 13.2%, respectively, and cell number was 31.5 and 24.1, respectively. These results suggest that chemical activation after fusion and culture in NCSU 23 could increase cell number of porcine NT embryos.

  • PDF

Lysophosphatidic acid improves development of porcine somatic cell nuclear transfer embryos

  • Ling Sun;Tao Lin;Jae Eun Lee;So Yeon Kim;Ying Bai;Dong Il Jin
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.726-739
    • /
    • 2024
  • This study was conducted to investigate whether lysophosphatidic acid (LPA) could improve the development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT-derived embryos were cultured in chemically defined polyvinyl alcohol (PVA)-based porcine zygote medium (PZM)-4 without or with LPA, and the development, cell proliferation potential, apoptosis, and expression levels of pluripotent markers were evaluated. LPA significantly increased the rates of cleavage and blastocyst formation compared to those seen in the LPA un-treatment (control) group. The expression levels of embryonic development-related genes (IGF2R, PCNA and CDH1) were higher (p < 0.05) in the LPA treatment group than in the control group. LPA significantly increased the numbers of total, inner cell mass and EdU (5-ethynyl-2'-deoxyuridine)-positive cells in porcine SCNT blastocysts compared to those seen in the control group. TUNEL assay showed that LPA significantly reduced the apoptosis rate in porcine SCNT-derived embryos; this was confirmed by decreases (p < 0.05) in the expression levels of pro-apoptotic genes, BAX and CASP3, and an increase (p < 0.05) in the expression level of the anti-apoptotic gene, BCL2L1. In addition, LPA significantly increased Oct4 expression at the gene and protein levels. Together, our data suggest that LPA improves the quality and development of porcine SCNT-derived embryos by reducing apoptosis and enhancing cell proliferation and pluripotency.

Interspecies Somatic Cell Nuclear Transfer Technique for Researching Dog Cloning and Embryonic Stem Cells

  • Sugimura, Satoshi;Sato, Eimei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Large quantities of high-quality recipient oocytes with uniform cytoplasm are needed for research in the promising field of somatic cell nuclear transfer (SCNT) and embryonic stem cell research. In canines, however, it is difficult to obtain large quantities of oocytes because each donor produces a limited number of mature oocytes in vivo. Although in vitro maturation (IVM) is considered an alternative approach to oocyte production, this technique is still too rudimentary to be used for the production of highquality, uniform oocytes in large quantities. One technique for overcoming this difficulty is to use oocytes obtained from different species. This technique is known as interspecies SCNT (iSCNT). This review provides an overview of recent advances in canine - porcine interspecies SCNT.

Analysis of Transgene Intergration Efficiency into Porcine Fetal Fibroblast using Different Transfection Methods

  • Kim, Baek-Chul;Kim, Hong-Rye;Kim, Myung-Yoon;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.113-117
    • /
    • 2009
  • Animals produced by somatic cell nuclear transfer (SCNT) using genetically modified cells are almost always transgenic, implying that this method is more efficient than the traditional pronuclear microinjection method. Most somatic cells for SCNT in animals are fetus-derived primary cells and successful gene integration in somatic cells will depend on transfection condition. The objective of this study is to evaluate the efficiency of electroporation (Microporator) and liposome reagents (F-6, F-HD, W-EX, W-Q, W-M) for tissue-type plasminogen activator (tPA) gene transfection and to estimate the overall efficiency of transfection of Korean native pig fetal fibroblast cells (KNPFF). Electroporation showed significantly higher transfection efficiency than liposome reagents with regard to the transfection of in vitro cultures in the early stages of development (41.7% with Microporator vs. 18.3% with F-6, 20.0% with F-HD 18.5% with W-EX, 5.0% with W-M and 6.3% W-Q,). Colonies identified as tPA-positives were treated once more with G418 for 10 to 14 days and growing colonies were selected again. When the cells of newly selected colonies were subjected to single-cell PCR, reselection of colonies following second round of G418 selection increased the rate of transgene integration per each colony. These results suggest that transfection with electroporation is the most efficient and the second rounds of G418 selection may be an effective method for transfection of porcine fetal fibroblast cells.

Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System

  • Koo, Ok Jae;Park, Sol Ji;Lee, Choongil;Kang, Jung Taek;Kim, Sujin;Moon, Joon Ho;Choi, Ji Yei;Kim, Hyojin;Jang, Goo;Kim, Jin-Soo;Kim, Seokjoong;Lee, Byeong-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.324-329
    • /
    • 2014
  • To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells ($RFP^+/eGFP^+$) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

Studies on In Vitro Fertilization and Development of In Vitro Matured Porcine Follicular Oocytes I. Effect of Various Media and Co-culture with Porcine Cumulus Cellsor Mouse Fetal Fibroblast Cells on In Vitro Development of In Vitro Fertilized Oocytes (체외성숙 돼지난포란의 체외수정과 배발달에 관한 연구 II. 각종 배양액, 돼지난구세포 및 생쥐태아간세포와의 공동배양이 체외수정 돼지 난포란의 체외발달에 미치는 영향)

  • 정형민;엄상준;승경록;이상준;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.2
    • /
    • pp.113-120
    • /
    • 1993
  • To provide the optimal culture conditions for the developm,ent of in vit개 produced embryos, we have been investigated various culture media as well as co-cultrue systems using porcine cumulus cells or mouse fetal fibroblast cells. Porcine ovaries were brought to the laboratory from local slaughter house within 1 hour after slaughtering and cumulus oocytes complexes were recovered from antral follicles(3~5mm) with 23 gauge needle. To maturate follicular oocytes, cumulus oocytes complexes were washed three times with TCM-199 containing 25mM HEPES and incubated(39$^{\circ}C$, 5% CO2 in air) in various maturation media for 42 hrs. Ejaculated and liquid storaged boar spermatozoa capacitated with different sperm capacitation methods and media were rpepared for fertilizing of matured follicular oocytes in vitro. Fertilization was performed by adding 5~10${\mu}\ell$ fo capacitated spermatozoa containing 1~5$\times$105 sperm/ml to droplets. Eighteen to twenty-eight hours after sperm insemination, fertilized eggs were washed three times with culture media and transferred to the various culture media, to the culture media with a monolayer of somatic cells. The in vitro development rates of 1-cell embryos cultured with three times with culture media and transferred to the various culture media, to the culture media with a monolayer of somatic cells. The in vitro development rates of 1-cell embryos cultured with three different media, m-KRB, BECM and TCM-HEPES were 0~1.0%, showing extremely lower rates. Especially, most of embryos were observed to arrest the development beyond 4-cell stages. The rates of embryos developed to 2-, 4-, 8-, 16-, 32-cell and morula or blastocyst stage in co-culture with porcine cumulus cells and mouse fetal fibroblast cells were 61.1~67.0%, 59.0~58.0%, 42.5~43.1%, 28.4~30.2% and 20.4~21.0%, respectively. These development rates upto morula or blastocyst stages were significantly higher than those of the embryos cultured in the basic culture medium(P<0.01). These findings suggest that co-culture of in vitro fertilized eggs with porcine cumulus cells or mouse fetal fibroblast cells enhance the development of fertilized eggs to morula or blastocyst stage in vitro.

  • PDF