DOI QR코드

DOI QR Code

Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System

  • Koo, Ok Jae (Laboratory Animal Research Center, Samsung Biomedical Research Institute) ;
  • Park, Sol Ji (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Choongil (National Creative Research Initiatives Center for Genome Engineering, Department of Chemistry, Seoul National University) ;
  • Kang, Jung Taek (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Sujin (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Moon, Joon Ho (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Choi, Ji Yei (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Hyojin (National Creative Research Initiatives Center for Genome Engineering, Department of Chemistry, Seoul National University) ;
  • Jang, Goo (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Jin-Soo (National Creative Research Initiatives Center for Genome Engineering, Department of Chemistry, Seoul National University) ;
  • Kim, Seokjoong (ToolGen Inc.) ;
  • Lee, Byeong-Chun (Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University)
  • Received : 2013.08.07
  • Accepted : 2013.09.25
  • Published : 2014.03.01

Abstract

To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells ($RFP^+/eGFP^+$) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

Keywords

References

  1. Buja, L. M., M. L. Eigenbrodt, and E. H. Eigenbrodt. 1993. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch. Pathol. Lab. Med. 117:1208-1214.
  2. Carbery, I. D., D. Ji, A. Harrington, V. Brown, E. J. Weinstein, L. Liaw, and X. Cui. 2010. Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451-459. https://doi.org/10.1534/genetics.110.117002
  3. Carlson, D. F., W. Tan, S. G. Lillico, D. Stverakova, C. Proudfoot, M. Christian, D. F. Voytas, C. R. Long, C. B. Whitelaw, and S. C. Fahrenkrug. 2012. Efficient talen-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. USA. 109:17382-17387. https://doi.org/10.1073/pnas.1211446109
  4. Cho, B., O. J. Koo, J. I. Hwang, H. Kim, E. M. Lee, S. Hurh, S. J. Park, H. Ro, J. Yang, C. D. Surh, A. J. D'Apice, B. C. Lee, and C. Ahn. 2011. Generation of soluble human tumor necrosis factor-alpha receptor 1-fc transgenic pig. Transplantation 92:139-147. https://doi.org/10.1097/TP.0b013e3182215e7e
  5. Doyon, Y., J. M. McCammon, J. C. Miller, F. Faraji, C. Ngo, G. E. Katibah, R. Amora, T. D. Hocking, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, and S. L. Amacher. 2008. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 26:702-708. https://doi.org/10.1038/nbt1409
  6. Flisikowska, T., I. S. Thorey, S. Offner, F. Ros, V. Lifke, B. Zeitler, O. Rottmann, A. Vincent, L. Zhang, S. Jenkins, H. Niersbach, A. J. Kind, P. D. Gregory, A. E. Schnieke, and J. Platzer. 2011. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One. 6(6):e21045. https://doi.org/10.1371/journal.pone.0021045
  7. Geurts, A. M., G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Menoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow. 2009. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. https://doi.org/10.1126/science.1172447
  8. Gil, M. A., C. Cuello, I. Parrilla, J. M. Vazquez, J. Roca, and E. A. Martinez. 2010. Advances in swine in vitro embryo production technologies. Reprod. Domest. Anim. 45 (Suppl 2):40-48. https://doi.org/10.1111/j.1439-0531.2010.01623.x
  9. Hauschild, J., B. Petersen, Y. Santiago, A. L. Queisser, J. W. Carnwath, A. Lucas-Hahn, L. Zhang, X. Meng, P. D. Gregory, R. Schwinzer, G. J. Cost, and H. Niemann. 2011. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 108:12013-12017. https://doi.org/10.1073/pnas.1106422108
  10. Kim, H., M. S. Kim, G. Wee, C. I. Lee, H. Kim, and J. S. Kim. 2013. Magnetic separation and antibiotics selection enable enrichment of cells with zfn/talen-induced mutations. PLoS One. 8(2):e56476.
  11. Kim, H., E. Um, S. R. Cho, C. Jung, H. Kim, and J. S. Kim. 2011. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat. Methods 8:941-943. https://doi.org/10.1038/nmeth.1733
  12. Kim, H. J., H. J. Lee, H. Kim, S. W. Cho, and J. S. Kim. 2009. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19:1279-1288. https://doi.org/10.1101/gr.089417.108
  13. Kim, S., M. J. Lee, H. Kim, M. Kang, and J. S. Kim. 2011. Preassembled zinc-finger arrays for rapid construction of zfns. Nat. Methods 8:7-9.
  14. Koo, O. J., G. Jang, and B. C. Lee. 2012. Minipig as laboratory animals: Facility management and husbandry. Reprod. Dev. Biol. 36:79-85.
  15. Li, P., J. L. Estrada, C. Burlak, and A. J. Tector. 2013. Biallelic knockout of the alpha-1,3 galactosyltransferase gene in porcine liver-derived cells using zinc finger nucleases. J. Surg. Res. 181:e39-45. https://doi.org/10.1016/j.jss.2012.06.035
  16. Lutz, A. J., P. Li, J. L. Estrada, R. A. Sidner, R. K. Chihara, S. M. Downey, C. Burlak, Z. Y. Wang, L. M. Reyes, B. Ivary, F. Yin, R. L. Blankenship, L. L. Paris, and A. J. Tector. 2013. Double knockout pigs deficient in n-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20:27-35. https://doi.org/10.1111/xen.12019
  17. Park, S. J., H. J. Park, O. J. Koo, W. J. Choi, J. H. Moon, D. K. Kwon, J. T. Kang, S. Kim, J. Y. Choi, G. Jang, and B. C. Lee. 2012. Oxamflatin improves developmental competence of porcine somatic cell nuclear transfer embryos. Cell. Reprogram. 14:398-406.
  18. Rodriguez-Martinez, H. and M. Wallgren. 2011. Advances in boar semen cryopreservation. Vet. Med. Int. Vol. 2011, Article ID 396181, 5 pages, doi:10.4061/2011/396181.
  19. Smith, A. C. and M. M. Swindle. 2006. Preparation of swine for the laboratory. ILAR J. 47:358-363. https://doi.org/10.1093/ilar.47.4.358
  20. Sung, Y. H., I. J. Baek, D. H. Kim, J. Jeon, J. Lee, K. Lee, D. Jeong, J. S. Kim, and H. W. Lee. 2013. Knockout mice created by talen-mediated gene targeting. Nat. Biotechnol. 31:23-24. https://doi.org/10.1038/nbt.2477
  21. Van Cruchten, S. and W. Van Den Broeck. 2002. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat. Histol. Embryol. 31:214-223. https://doi.org/10.1046/j.1439-0264.2002.00398.x
  22. Watanabe, M., K. Umeyama, H. Matsunari, S. Takayanagi, E. Haruyama, K. Nakano, T. Fujiwara, Y. Ikezawa, H. Nakauchi, and H. Nagashima. 2010. Knockout of exogenous egfp gene in porcine somatic cells using zinc-finger nucleases. Biochem. Biophys. Res. Commun. 402:14-18. https://doi.org/10.1016/j.bbrc.2010.09.092
  23. Whyte, J. J. and R. S. Prather. 2011. Genetic modifications of pigs for medicine and agriculture. Mol. Reprod. Dev. 78:879-891. https://doi.org/10.1002/mrd.21333
  24. Whyte, J. J., J. Zhao, K. D. Wells, M. S. Samuel, K. M. Whitworth, E. M. Walters, M. H. Laughlin, and R. S. Prather. 2011. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol. Reprod. Dev. 78:2. https://doi.org/10.1002/mrd.21271
  25. Wolff, A., I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman. 2003. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip. 3:22-27. https://doi.org/10.1039/b209333b
  26. Yang, D., H. Yang, W. Li, B. Zhao, Z. Ouyang, Z. Liu, Y. Zhao, N. Fan, J. Song, J. Tian, F. Li, J. Zhang, L. Chang, D. Pei, Y. E. Chen, and L. Lai. 2011. Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. 21:979-982. https://doi.org/10.1038/cr.2011.70

Cited by

  1. Effects of proteinate complex zinc on growth performance, hepatic and splenic trace elements concentrations, antioxidative function and immune functions in weaned piglets vol.30, pp.8, 2017, https://doi.org/10.5713/ajas.16.0867
  2. Production of Knockout Mice using CRISPR/Cas9 in FVB Strain vol.30, pp.4, 2015, https://doi.org/10.12750/jet.2015.30.4.299
  3. Target-AID-Mediated Multiplex Base Editing in Porcine Fibroblasts vol.11, pp.12, 2021, https://doi.org/10.3390/ani11123570