• Title/Summary/Keyword: Porcelain metal

Search Result 264, Processing Time 0.025 seconds

Porcelain repair - Influence of different systems and surface treatments on resin bond strength

  • Yoo, Ji-Young;Yoon, Hyung-In;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.343-348
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the bond strength of composite resin on the fracture surface of metal-ceramic depending on the repair systems and surface roughening methods. MATERIALS AND METHODS. A total of 30 disk specimens were fabricated, 15 of each were made from feldspathic porcelain and nickel-chromium base metal alloy. Each substrate was divided into three groups according to the repair method: a) application of repair system I (Intraoral Repair Kit) with diamond bur roughening (Group DP and DM), b) application of repair system I with airborne-particle abrasion (Group SP and SM), and c) application of repair system II (CoJet Intraoral Repair System, Group CP and CM). All specimens were thermocycled, and the shear bond strength was measured. The data were analyzed using the Kruskal-Wallis analysis and the Mann-Whitney test with a significance level of 0.05. RESULTS. For the porcelain specimens, group SP showed the highest shear bond strength ($25.85{\pm}3.51MPa$) and group DP and CP were not significantly different. In metal specimens, group CM showed superior values of bond strength ($13.81{\pm}3.45MPa$) compared to groups DM or SM. CONCLUSION. Airborne-particle abrasion and application of repair system I can be recommended in the case of a fracture localized to the porcelain. If the fracture extends to metal surface, the repair system II is worthy of consideration.

Evaluation of shear bond strengths of gingiva-colored composite resin to porcelain, metal and zirconia substrates

  • An, Hong-Seok;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.166-171
    • /
    • 2011
  • PURPOSE. The purpose of this study is to evaluate and compare the shear bond strength of the gingiva-colored composite resin and the tooth-colored composite resin to porcelain, metal and zirconia. MATERIALS AND METHODS. Sixty cylindrical specimens were fabricated and divided into the following 6 groups (Group 1-W: tooth-colored composite bonded to porcelain, Group 1-P: gingiva-colored composite bonded to porcelain, Group 2-W: tooth-colored composite bonded to base metal, Group 2-P: gingiva-colored composite bonded to base metal, Group 3-W: tooth-colored composite bonded to zirconia, Group 3-P: gingiva-colored composite bonded to zirconia). The shear bond strength was measured with a universal testing machine after thermocycling and the failure mode was noted. All data were analyzed using the two-way analysis of variance test and the Bonferroni post-hoc test at a significance level of 0.05. RESULTS. The mean shear bond strength values in MPa were 12.39, 13.42, 8.78, 7.98, 4.64 and 3.74 for Group 1-W, 1-P, 2-W, 2-P, 3-W and 3-P, respectively. The difference between the two kinds of composite resin was not significant. The shear bond strength of Group 1 was the highest and that of Group 3 was the lowest. The differences among Group 1, 2 and 3 were all significant (P<.05). CONCLUSION. The shear bond strength of the gingiva-colored composite was not less than that of the tooth-colored composite. Thus, repairing or fabricating ceramic restorations using the gingiva-colored composite resin can be regarded as a practical method. Especially, the prognosis would be fine when applied on porcelain surfaces.

Resin bonding of metal brackets to glazed zirconia with a porcelain primer

  • Lee, Jung-Hwan;Lee, Milim;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.6
    • /
    • pp.299-307
    • /
    • 2015
  • Objective: The aims of this study were to compare the shear bond strength between orthodontic metal brackets and glazed zirconia using different types of primer before applying resin cement and to determine which primer was more effective. Methods: Zirconia blocks were milled and embedded in acrylic resin and randomly assigned to one of four groups: nonglazed zirconia with sandblasting and zirconia primer (NZ); glazed zirconia with sandblasting, etching, and zirconia primer (GZ); glazed zirconia with sandblasting, etching, and porcelain primer (GP); and glazed zirconia with sandblasting, etching, zirconia primer, and porcelain primer (GZP). A stainless steel metal bracket was bonded to each target surface with resin cement, and all specimens underwent thermal cycling. The shear bond strength of the specimens was measured by a universal testing machine. A scanning electron microscope, three-dimensional optical surface-profiler, and stereoscopic microscope were used to image the zirconia surfaces. The data were analyzed with one-way analyses of variance and the Fisher exact test. Results: Group GZ showed significantly lower shear bond strength than did the other groups. No statistically significant differences were found among groups NZ, GP, and GZP. All specimens in group GZ showed adhesive failure between the zirconia and resin cement. In groups NZ and GP, bonding failed at the interface between the resin cement and bracket base or showed complex adhesive and cohesive failure. Conclusions: Porcelain primer is the more appropriate choice for bonding a metal bracket to the surface of a full-contour glazed zirconia crown with resin cement.

Evaluation of Color Change according to Process Step of Fused Porcelain to SLM Method (치과용 레이저 선택가공 금속체의 도재 소성단계에 따른 색조변화 관찰)

  • Kim, Chi-Young;Chung, In-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.236-242
    • /
    • 2010
  • The porcelain fused metal was made through the progressive fused process of porcelain on substructure of metal material. The substructure was made using novel SLM method. The objective of this study was to observe the color change of porcelain using spectrophotometer equipment according to porcelain fused step and production methods after conducting the process of casting and SLM method of the substructure. The color change by step was indicated that fused opaque porcelain groups(CN1, CC1, CT1, SC1, ST1) had color difference(${\Delta}E$=30) by comparison with fused body porcelain groups(CN2, CC2, CT2, SC2, ST2) and fused glazing porcelain groups(CN3, CC3, CT3, SC3, ST3) (p<0.05). and there was no color difference between the substrates(CN, CC, CT) made by the casting method and the substrates(SC, ST) made by the SLM method. so, the color change was expressed by fused change of porcelain, and this study showed that the color of porcelain fused metal made by the SLM method can be applied clinical trials.

A study on the fracture strength of collarless metal-ceramic fixed partial dentures

  • Yoon, Jong-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.134-141
    • /
    • 2010
  • PURPOSE. The objective of this study was to evaluate fracture strength of collarless metal-ceramic FPDs according to their metal coping designs. MATERIALS AND METHODS. Four different facial margin design groups were investigated. Group A was a coping with a thin facial metal collar, group B was a collarless coping with its facial metal to the shoulder, group C was a collarless coping with its facial metal 1 mm short of the shoulder, and group D was a collarless coping with its facial metal 2 mm short of the shoulder. Fifteen 3-unit collarless metal-ceramic FPDs were fabricated in each group. Finished FPDs were cemented to PBT (Polybutylene terephthalate) dies with resin cement. The fracture strength test was carried out using universal testing machine (Instron 4465, Instron Co., Norwood MA, USA) at a cross head speed of 0.5 mm/min. Aluminum foil folded to about 1 mm of thickness was inserted between the plunger tip and the incisal edge of the pontic. Vertical load was applied until catastrophic porcelain fracture occurred. RESULTS. The greater the bulk of unsupported facial shoulder porcelain was, the lower the fracture strength became. However, there were no significant differences between experimental groups (P > .05). CONCLUSION. All groups of collarless metal-ceramic FPDs had higher fracture strength than maximum incisive biting force. Modified collarless metal-ceramic FPD can be an alternative to all-ceramic FPDs in clinical situations.

Analysis of the bonding strength according to surface treatments of dental Co-Cr alloy for porcelain fused to metal (치과용 Co-Cr 금속도재관의 표면처리에 의한 도재와의 결합 강도 분석)

  • Park, Hee-Geun;Park, Won-UK;Zhao, Jinming;Hwang, Kyu-Hong
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.175-183
    • /
    • 2016
  • Purpose: Observation of Oxide Film Formation and Bonding Strength according to surface treatment of Co-Cr Alloy for porcelain fused to Metal. Methods: metal specimens $0.5mm{\times}25mm{\times}4mm$ in size were made using Co-Cr alloys for porcelain fused to metal crown (Heraenium P, Tae jung Medis). Dental porcelain $0.5mm{\times}25mm{\times}4mm$ in size was sintered on the metal specimens after changing the etching time, sandblasting condition, and heat treatment temperature. Subsequently, the bonding strength was compared by the three-point flexural strength test using a universal testing machine (UTM) to observe the fracture surface and oxidized layers. Results: With regard to the experimental group treated with acid-etching, Specimen 1 treated for 25 minutes (B-3) showed the highest bonding strength, and Specimen 2 treated only with sandblasting showed the most excellent bonding force at 3.5 bar (C-3). With regard to the experimental group treated with sandblasting at 3.5 bar after acid-etching for 25 minutes, Specimen 3 with heat treatment at $980^{\circ}C$ (D-3) showed the highest bonding strength. Conclusion: The specimen which went through both sandblasting and etching, showed an excellent ceramicmetal bond strength.

Surface Coatings to Enhance Bonding Strength of Dental Titanium-Ceramic Restorative System (치과용 타타늄-세라믹 수복시스템의 결합강도 향상을 위한 표면 코팅)

  • Lee, Hae-Hyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.600-604
    • /
    • 2008
  • Although titanium-ceramic systems have gained substantial interests in dental prosthetic field, bonding problem between porcelain and titanium has not been solved. Main obstacle in titanium-porcelain bonding is excessive oxidation of titanium during porcelain firing. The effects of several coating materials on the bonding strength of titanium-porcelain system were investigated in this study. RF sputtering and electroplating of platinum significantly increased the bonding strength of porcelain-titanium specimen. However, coatings of Ni-Au, Ir, and ceramics(zirconia and hydroxyapatite) did not showed a significant effect on bonding strength. Platinum might be a promising material for the protective layer of excessive oxidation of titanium during porcelain firing, resulting in increase in the bonding strength.

Pressable Ceramic을 이용한 전치부 Spacing의 무삭제 심미보철수복

  • Im, Ui-Bin;Lee, Jong-Yeop
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.10 no.2
    • /
    • pp.15-20
    • /
    • 2001
  • The spaced dentition is a common clinical finding. The careful analysis of clinically spaced dentition is a necessity for effective treatment planning. Spaced dentition often exists in the presence of intact teeth. Therefore, special care should be taken in order to obtain the most successful esthetic effect and to prevent overtreatment as well. The aesthetic restorative dental treatment using the porcelain laminate veneers is getting more popular than the complex orthodontic treatment, and prosthetic solutions that require sacrifice of sound tooth structure. The physical strength of porcelain laminate veneers is not as good as porcelain fused metal crowns, and more researches are needed in the field of bonding between composite cement and porcelain laminate veneer. However, the esthetic results from this unprepared porcelain laminate veneers were satisfactory with Authentic (Ceramay, Germany) pressable ceramic technique and resin cement (Rely X Veneer, 3M). This article deals with 2 cases of unprepared porcelain laminate veneers on anterior teeth.

  • PDF

EFFECT OF DEGASSING CONDITION ON CERAMIC BOND STRENGTH OF Ni-Cr ALLOYS (Degassing 조건이 Ni-Cr 합금의 도재결합력에 미치는 영향)

  • Lee, Eun-Hwa;Jeon, Young-Chan;Jeong, Chang-Mo;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.461-471
    • /
    • 2000
  • This study evaluated the effect of degassing on the ceramic bond strength of two Ni-Cr alloys under varying holding time at the upper limit temperature and atmospheric conditions. Metal specimens were divided into 5 groups for each alloy according to degassing conditions prior to porcelain application no degassing, degassing under vacuum without hold, degassing under vacuum with hold for 5 min. and 10 min. respectively at the upper limit temperature and degassing in air. Total number of metal ceramic specimens was eighty and each group had eight specimens. The ceramic bond strength was measured by four-point flexural test using Instron and the fractured surface was examined under SEM. The results obtained were as follows. 1. Degassing in air improved the ceramic bond strength of Ni-Cr alloys. 2. In degassing under vacuum, hold at the upper limit temperature was advantageous to the ceramic bonding of Ni-Cr alloys. 3. After ceramic metal bond test, metal surfaces were partially covered with the thin porcelain layer, and the cohesive failures in porcelain were predominant in groups showing higher ceramic bond strength.

  • PDF

Effects of Indium and Tin on Interfacial Property of Porcelain Fused to Low Gold Alloys (도재소부용 금합금에서 인듐, 주석 첨가가 금속-도재계면 특성에 미치는 영향)

  • Nam, Sang-Yong;Kwak, Dong-Ju;Chung, Suk-Min
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.31-43
    • /
    • 2001
  • This study was performed to observe the micro-structure change of surface, behavior of oxide change of element, the component transformation of the alloy and the bonding strength between the porcelain interface in order to investigate effects of indium, tin on interfacial properties of porcelain fused to low gold alloy. Hardness of castings was measured with a micro-Vicker's hardness tester. The compositional change of the surface of heat-treated specimen was analyzed with an EDS and an EPMA. The interfacial shear bonding strength between alloy specimen and fused porcelain was measured with a mechanical testing system(MTS 858.20). The results were as follows: 1) The hardness value of alloy increased as increasing amount of indium addition. 2) The formation of oxidation increased as increasing indium and tin contents after heat treatment. 3) Diffusion of indium and tin elements increased as increasing indium and tin contents in metal-porcelain surface after porcelain fused to metal firing. 4) The most interfacial shear bonding strength was increased as increasing a composition of adding elements, and a heat-treatment time, and an oxygen partial pressure. From the results of this study it was found that the addition of alloying elements such as indium and tin increase hardness of as-cast alloy, produce surface oxide layer of adding elements by heat-treatment which may improve interfacial bonding strength between alloy and porcelain.

  • PDF