• Title/Summary/Keyword: Pool water

Search Result 544, Processing Time 0.027 seconds

A Study on Improvement of Existing Fishways - Focusing on Fishways Located at Downstream of Eastern Coast Rivers in Korea - (기존 어도의 개선에 관한 조사 연구 - 우리나라 동해안 하류 하천 내 어도를 중심으로 -)

  • Lee, Hyeong-Rae;Kim, Ki-Heung;Jung, Hea-Reyn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.4
    • /
    • pp.61-79
    • /
    • 2016
  • This study aims at examining the structural and managemental problems of the existing fishways which affect the migrations of fishes, and at suggesting alternatives to improve the fishways' efficiency. The study focuses on the fishways constructed in the diversion weirs in the lower reaches of 41 rivers(2 national rivers and 39 rural rivers) in the eastern coast of Korea. Most of water-using facilities in Korean rivers are diversion weirs, and fishways are established as subsidiary facilities of most of the weirs. Among the 58 or so fishways examined in this study, only a few are doing their proper function, and most of them need improvement. This study aims at strengthening those fishways function and increasing their economic efficiency and migration efficiency. Based on the results of this study, the followings are suggested. In case the fishway sticks out downstream from the apron, a subsidiary fishway diverging from the main is suggested to attract fish. The entrance to the subsidiary should head below the raised part of the apron and a pool should be constructed in the connecting part with the main. To attract fish and let the upstream migrators rest for a while, an entrance pool should be constructed in the fishway. Most of the examined fishways have low side walls, which allow the upstreamers to jump out of the fishway. Those side walls are suggested to be raised above the jumping height of target fishes. The exit parts of most fishways are too shallow, or have no grass to protect the fish from the birds. Protective facilities are suggested to keep the birds from entering the fishway. By the time Ice-harbor type and Vertical-slot type fishways are scientifically proved to be defective, the fishway should not diverge from the standard design.

Analysis of Water Purification Capability of the Spent Fuel Storage Pool Using Consolidated Fuel Storage in Uljin 1&2 (조밀화 핵연료 집합체 저장에 의한 울진 1&2호기의 사용후 핵연료 저장조 정화능력 해석)

  • Lim, Chae-Joon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.83-94
    • /
    • 1990
  • The radioactivity in the spent fuel storage pool is calculated to ensure to maintain its concentration below the permissible limit, when the storage capacity of Uljin nuclear power plant unit 1&2 is extended from 9/3 to 32/3 core using consolidated fuels in maximum density rack (MDR). For this evalulation, two models to calculate the spent fuel pool activities on the continuous and intermittent operating its purification system are developed and these results compared, The results of above two cases show that the current water purification system can not guarantee the radioactivity concentration below the design limit, 5$\times$10$^{-4}$ $\mu$Ci/ml, for the extention to 32/3 core. Therefore, it has been concluded that a modification of the current purification system is necessary to extend the spent fuel storage capacity with the above method. The alternative way suggested in this study is to increase the number of cation bed demineralizers.

  • PDF

Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool (얕은 감세지내의 극한 세굴잠재능 예측)

  • 손광익
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.123-131
    • /
    • 1994
  • A plunge pool is often employed as an energy-dissipating device at the end of a spillway or a pipe culvert. A jet from spillways or pipes frequently generates a scour hole which threatens the stability of the hydraulic structure. Existing scour prediction formulas of plunge pool of spillways or pipe culverts give a wide range of scour depths, and it is, therefore, difficult to accurately predict those scour depths. In this study, a new experimental method and new scour prediction formulas under submerged circular jet for large bed materials with shallow tailwater depths were developed. A major variale, which was not used in previous scour prediction equations, was the ratio of jet size to bed material size. In this study, jet momentum acting on a bed particle and jet diffustion theory were employed to derive scour prediction formulas. Four theoretical formulas were suggested for the two regions of jet diffusion, i.e., the region of flow establishment and the region of established flow. The semi-theoretically developed scour prediction formulas showed close agreement with laboratory experiments performed on a movable bed made of large spherical particles.

  • PDF

Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings

  • Jun, Seongchul;Kim, Jinsub;Son, Donggun;Kim, Hwan Yeol;You, Seung M.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.932-940
    • /
    • 2016
  • Pool boiling heat transfer of water saturated at atmospheric pressure was investigated experimentally on Cu surfaces with high-temperature, thermally-conductive, microporous coatings (HTCMC). The coatings were created by sintering Cu powders on Cu surfaces in a nitrogen gas environment. A parametric study of the effects of particle size and coating thickness was conducted using three average particle sizes (APSs) of $10{\mu}m$, $25{\mu}m$, and $67{\mu}m$ and various coating thicknesses. It was found that nucleate boiling heat transfer (NBHT) and critical heat flux (CHF) were enhanced significantly for sintered microporous coatings. This is believed to have resulted from the random porous structures that appear to include reentrant type cavities. The maximum NBHT coefficient was measured to be approximately $400kW/m^2k$ with APS $67{\mu}m$ and $296{\mu}m$ coating thicknesses. This value is approximately eight times higher than that of a plain Cu surface. The maximum CHF observed was $2.1MW/m^2$ at APS $67{\mu}m$ and $428{\mu}m$ coating thicknesses, which is approximately double the CHF of a plain Cu surface. The enhancement of NBHT and CHF appeared to increase as the particle size increased in the tested range. However, two larger particle sizes ($25{\mu}m$ and $67{\mu}m$) showed a similar level of enhancement.

The Effects of Water Mist on the Compartment Fire

  • Ryou, Hong-Sun;Kim, Sung-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • The present study investigates the fire suppression characteristics using a water mist fire suppression system. Numerical simulations of fire suppression with water mist are performed with considering the interaction of fire plume and water spray. The predicted temperature fields of smoke layer are compared with those of measured data. Numerical results agree with the experimental results within $10^{\circ}C$ in the case without water mist. In the case of fire suppression with water mist, numerical results do not predict well for temperature field in the gradual cooling region after water mist injection. But the predicted results of initial fire suppression are in good agreement with those of measured data. The reason for the discrepancy between predicted and measured data is due to the poor combustion modeling during the injection of water mist. More elaborate models for numerical simulation are required for better predictions of the fire suppression characteristics using water mist.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.