• Title/Summary/Keyword: Pool water

Search Result 544, Processing Time 0.025 seconds

An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe (수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구)

  • 이진성;김철주;김선주;문석환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

An Experimental Study on the Effects of ...an Inserted Coil on Flow Patterns pd. Beat Transport Performances for a Horizontal Rotating Heat Pipe

  • Lee, Jin-Sung;Kim, Chul-Ju;Kim, Bong-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.50-61
    • /
    • 2000
  • The effects of an inserted coil on flow . patterns and heat transfer performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low rpm(less than 1,000rpm), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing rpm. The pumping effects for RHP with an inserted coil resulted in the enhancement in both condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher rpm(above 1,000-1,200) with the transition of flow regime to annular flow.

  • PDF

Effect of particle sizes on CHF enhancement and boiling characteristics of nano-fluids (나노유체의 임계열유속 및 비등특성에 미치는 나노입자 크기의 영향)

  • Jo, Byeong-Nam;Kang, Jun-One;Yoo, Jai-Suk;Kim, Hyun-Jung
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.125-130
    • /
    • 2006
  • The characteristics of boiling heat transfer and critical heat flux (CHF) behavior of nano-fluids were studied by using various sized silver and alumina nanoparticles. The diameter of nanoparticles was from 2 nm to 250 nm for silver and from 20nm to 40nm for alumina. Pool boiling characteristics and CHF enhancement of nano-fluids with different sized nanoparticles were compared with those of pure water and each nano-fluids. The experiment was performed at atmospheric pressure and the temperature of the pool was maintained constantly by using a flat immersed heater. The concentration of nano-fluids was uniform in all experiments as 0.01g/liter. The results showed that the measured boiling curves were shifted to the right. It demonstrated that the occurrence of nucleate boiling regime in nano-fluids retarded, compared with that of pure water. Also, in nano-fluids, the boiling curves showed that CHF of nano-fluids is significantly enhanced and represented the effect of particle size on boiling characteristics.

  • PDF

Gradation and Transport Characteristics of Bed Materials in Pool-Riffle Sequence in the Gap Stream, Korea (갑천의 웅덩이-여울 연속구조에서 하상토의 입도 및 이동 특성)

  • Choi, Sung-Uk;Bae, Hye-Deuk
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.65-72
    • /
    • 2011
  • Natural streams meander, forming pools at the outer part of bend and riffles at the crossing. Pools are deep at a lower flow velocity, and riffles are shallow at a higher flow velocity. Attentions are being paid to pool-riffle sequences in meandering streams because pool-riffle sequences tend to increase biodiversity of the stream ecosystem. This study investigates the characteristics of distribution of bed sediment particles in the upstream reach of the Gap Stream, which is a tributary of the Geum River in Korea. The upstream part of the Gap Stream, the study reach, is a gravel-bed stream, showing a pool and three riffles due to meandering. The reach also includes pools at the upstream and downstream parts of the weir. The characteristics of bed sediment particles sampled at the wetland and in the side channel are studied, revealing that the median particle diameter in the riffle is about four times larger than that in the pool. In addition, flow simulations are carried out for ordinary discharge and design flood, and such parameters important to sediment transport as velocity, shear stress, dimensionless shear stress (or Shields number), and dimensionless shear velocity are provided to see the mobility of sediment particles in the pool-riffle sequence.

Water Quality Improvement Characteristics in Fallow Paddy by the Shallow Pool and Shallows (휴경지의 웅덩이와 여울에 의한 수질정화특성)

  • Kim, Sun-Joo;Kim, Hyung-Jung;Kim, Phil-Shik;Jee, Yong-Geun;Yang, Yong-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.35-45
    • /
    • 2006
  • Fallow paddy areas have been increased due to the import of cheap agricultural product, and the unbalance between farming cost and rice price since 1990. In domestic, rice production control that decrease paddy field area has been introduced for the control of rice demand and supply and stabilization of rice price since 2003. Because of the desire of paddy field's owner to create benefit by using paddy for other object, fallow paddy would be continuously increased. In the other aspect, many people in the world is suffering from hunger because of the shortage of food. In case of Korea, continuous drought and flood damages will be potential concern of stable food supply. From this viewpoint, the increasing fallow paddy area needs to be protected from the devastation by weed breeding for the re-cultivation. In this study, fallow paddy managed with the shallow pools and shallows was selected fur monitoring and analyzing of water quality and plant body change. As the results, the managed fallow paddy found to be effective in the purification of water quality and the control of plant growth.

Experimental Study of the Ultrasonic Vibration Effects on CHF Occurring on Inclined Flat Surfaces (초음파 진동이 경사진 평판에서의 CHF에 미치는 영향에 대한 실험연구)

  • 정지환;김대훈;권영철
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • Augmentation of CHF by ultrasonic vibration in water pool is experimentally investigated under pool boiling condition. The experiments are carried out using copper coated plates and distilled water. Measurements of CHF on flat plate heated surface were made with and without ultrasonic wave and with variations in inclined angle of the surface and water subcooling. Experimental apparatus consists of a bath, power supply, test section, ultrasonic generator, and data acquisition system. The measurements show that ultrasonic wave enhances CHF and its extent is dependent upon inclination angle as well as water subcooling. The rate of increase in CHF increases with an increase in water subcooling while it decreases with an increase in inclination angle. Visual observation shows that the cause of CHF augmentation is closely related with the dynamic behavior of bubble generation and departure in acoustic field.

Pool boiling heat transfer enhancement by perforated plates (천공판의 풀비등 열전달 촉진에 대한 연구)

  • Kim, Nae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1406-1415
    • /
    • 1996
  • Several recent studies have revealed that boiling heat transfer may be considerably enhanced in a narrow restricted region. In his study, the narrow restricted region was formed by attaching a perforated plate on top of a boiling surface. Through systematic experiments, effects of the hole size, hole pattern, gap width between the perforated plate and the boiling surface were investigated using water or R-113. Results show that perforated plates considerably enhance the boiling of water or R-113. For water, especially, they have outperformed commercial enhanced tubes, which confirms that boiling enhancement mechanism of the perforated plate (thin film evaporation beneath the elongated bubble) is very effective to the boiling of high surface tension liquids such as water. Optimum configuration was found - 3.0 mm hole diameter, 15 mm * 15 mm hole pattern, 0.3 ~ 0.5 mm gap width for water, and 2.0 mm hole diameter, 3.5 mm * 3.5 mm hole pattern, O.5 mm gap width for R-113. A correlation which correlates most of the data within .+-. 30% was also developed.

Numerical Simulation on the Behavior of Air Bubble Discharging into a Water Pool through a Sparger without Load Reduction Ring (하중저감 링이 없는 증기분사기를 통해 수조로 방출되는 기포 거동에 대한 수치해석)

  • 김환열;배윤영;송진호;김희동
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Load reduction ring (LRR) was installed on the ABB-Atom sparger to reduce the oscillatory loadings due to the air bubble clouds in the water pool in case of safety relief system operations. In order to investigate the effect of LRR on the pressure field, a numerical simulation on the behavior of air bubble clouds discharging into a water pool through a ABB-Atom sparser without LRR was performed by using a commercial thermal hydraulic analysis code, FLUENT 4.5. Among the multi-phase models contained in the code, the VOF (Volume Of Fluid) model was used to simulate the interface of water, air and steam flows. By comparing the analysis results with the previous ones, the load reduction ring has an effect on reducing the oscillatory loads at the wall. It also includes the effect of air mass and inlet boundary conditions of the pipe on the pressure oscillations at the wall.

Multiple-Hole Effect on the Performance of a Sparger During Direct Contact Condensation of Steam

  • Seok Cho;Song, Chul-Hwa;Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.482-491
    • /
    • 2001
  • An experimental study has been carried out to investigate an I-type sparger-performance in view of pressure oscillation and thermal mixing in a pool. Its pitch-to-hole diameter, P/D, varies from 2 to 5. The test conditions are restricted to the condensation oscillation regime. In the present study, two different hole patterns, staggered and parallel types, are employed under various test conditions. The amplitude of the pressure pulse shows a peak for pool temperatures of 45∼85$\^{C}$, which depends on P/D and the steam mass flux. The effect of hole pattern on the pressure load is smaller than that of P/D. The dominant frequency increases with the subcooling temperature of pool water and P/D. A correlation for the dominant frequency is proposed in terms of the pitch-to-hole diameter ratio and other dimensionless thermal hydraulic parameters.

  • PDF

Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool

  • Son, Kwang-Ik
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.1-11
    • /
    • 1995
  • A plunge pool is often employed as an energy-dissipating device at the end of a spillway or a pipe culvert. A jet from spillways or pipes frequently generates a scour hole which threaten the stability of the hydraulic structure. Existing scour prediction formulas of plunge pool of spillways or pipe culverts give a wide range of scour depths, and it is, therefore, difficult to accurately predict those scour depths. In this study, a new experimental method and new sour prediction formulas under submerged circular jet for large bed materials with shallow tailwater depths were developed. A major variable, which was not used in previous scour prediction equations, was the ratio of jet size to bed material size. In this study, jet momentum acting on a bed particle and jet diffustion theory were employed to derive scour prediction formulas. Four theoretical formulas were suggested for the two regions of jet diffusion, i.e., the region of flow establishment and the region of established flow. The semi-theoretically developed scour prediction formulas showed close agreement with laboratory experiments performed on movable bed made of large spherical particles.

  • PDF