• 제목/요약/키워드: Pool Type Research Reactor

검색결과 54건 처리시간 0.017초

하나로 유동모의 설비의 유체순환계통 해석 (The Analysis of Flow Circulation System for HANARO Flow Simulated Test Facility)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.419-424
    • /
    • 2002
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality In February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulation facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The flow circulation system is composed of a circulation pump, a core flow pipe, a core bypass flow pipe and instruments. The system is to be filled with de-mineralized water and the flow should be met the design flow to simulate similar flow characteristics in the core channel of the half-core test facility to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the system. The computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with standard k-$\epsilon$ turbulence model and for the verification of the structural piping integrity through the finite element method. The results of the analysis are satisfied the design requirements and structural piping integrity of flow circulation system.

  • PDF

하나로 유동 모의 설비의 유체순환계통 해석 (The Analysis for Flow Circulation System in HANARO Flow Simulation Facility)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제7권1호
    • /
    • pp.30-35
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. HANARO flow simulation facility is being developed for the endurance test of reactivity control units for extended life time and the verification of structural integrity of those experimental equipments prior to loading in the HANARO. This facility is composed of three major parts; a half-core structure assembly, a flow circulation system and a support system. The flow circulation system is composed of a circulation pump, a core flow piping, a core bypass flow piping and instruments. The system is to be filled with de-mineralized water and the flow should be met the design requirements to simulate a similar flow characteristics in the core channel of the half-core structure assembly to the HANARO. This paper, therefore, presents an analytical analysis to study the flow behavior of the system. Computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with the standard $k-{\epsilon}$ turbulence model and for the verification of the structural piping integrity through the finite element method. According to the analysis results, it could be said that the design requirements and the structural piping integrity of the flow circulation system are satisfied.

INHERENT SAFETY ANALYSIS OF THE KALIMER UNDER A LOFA WITH A REDUCED PRIMARY PUMP HALVING TIME

  • Chang, W.P.;Kwon, Y.M.;Jeong, H.Y.;Suk, S.D.;Lee, Y.B.
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.63-74
    • /
    • 2011
  • The 600 MWe, pool-type, sodium-cooled, metallic fuel loaded KALIMER-600 (Korea Advanced LiquId MEtal Reactor, 600 MWe) has been conceptually designed with an emphasis on safety by self-regulating (inherent/intrinsic) negative reactivity feedback in the core. Its inherent safety under the ATWS (Anticipated Transient Without Scram) events was demonstrated in an earlier study. Initiating events of an HCDA (Hypothetical Core Disruptive Accident), however, also need to be analyzed for assessment of the margins in the current design. In this study, a hypothetical triple-fault accident, ULOF (Unprotected Loss Of Flow) with a reduced pump halving time, is investigated as an initiator of a core disruptive accident. A ULOF with insufficient primary pump inertia may cause core sodium boiling due to a power-to-flow mismatch. If the positive sodium reactivity resulting from this boiling is not compensated for by other intrinsic negative reactivity feedbacks, the resulting core power burst would challenge the fuel integrity. The present study focuses on determination of the limit of the pump inertia for assuring inherent reactivity feedback and behavior of the core after sodium boiling as well. Transient analyses are performed with the safety analysis code SSC-K, which now incorporates a new sodium boiling model. The results show that a halving time of more than 6.0 s does not allow sodium boiling even with very conservative assumptions. Boiling takes place for a halving time of 1.8 s, and its behavior can be predicted reasonably by the SSC-K.

하나로 1차 냉각펌프 제염에 대한 고찰 (Study on the Decontamination of Primary Cooling Pump in HANARO)

  • 안정석;이경호;김광득;박용철
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.21-29
    • /
    • 2005
  • 30 MW의 연구용 원자로인 하나로는 1995년 2월 초임계에 도달한 이후, 정상적으로 가동하고 있다. 가동 후 약 10년이 경과하여 1차 냉각펌프를 분해 점검하기 위해 펌프에 대한 화학제염이 2004년에 수행되었다. 제염을 수행하기 이전에 4개의 point를 설정하여 방사선량율 및 표면오염도를 측정하였고, 최종제염이 수행된 이후 같은 point에 대하여 방사선량율 및 표면오염도를 재측정 하였다. 펌프 외부는 노출되어 있어 쉽게 제염할 수 있으나 케이싱 내부에는 2중 볼류트가 있어 접근이 용이하지 않았다. 이를 제염하기 위하여 제염장치를 개발하였다. 이 장치는 일정 농도의 제염제 (DX-300)를 케이싱 내부에 담아 밀폐시킨 후 펌프의 임펠러를 저속으로 회전함으로서 제염제가 순환된다. 제염제의 유화작용에 의해 표면의 입자성 방사선 물질이 이완되고, 화학 작용에 의해 부식력과 용해성으로 표면 오염이 제거된다. 이 장치를 이용하여 하나로 1차 냉각펌프의 케이싱 내부를 제염하였다. 그 결과 1차 냉각펌프의 케이싱 내부는 반출허용표면오염도 이하로 낮출 수 있어 성공적으로 제염할 수 있었다.

  • PDF