• Title/Summary/Keyword: Pool Type Research Reactor

Search Result 54, Processing Time 0.025 seconds

Dynamic Behavior of Oxide and Nitride LMR Cores during Unprotected Transients

  • Na, Byung-Chan;Dohee Hahn
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.489-494
    • /
    • 1997
  • A comparative transient analyses were performed for oxide and nitride cores or a large (3000 MWt), pool-type, liquid-metal-cooled reactor (LMR). The study was focused on three representative accident initiators with failure to scram : the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected fast transient overpower (UFTOP). The margins to fuel melting and sodium boiling have been evaluated for these representative transients. The results show that there is an increase in safety margin with nitride core which maintains the physical dimensions of the oxide core.

  • PDF

THERMAL-HYDRAULIC TESTS AND ANALYSES FOR THE APR1400'S DEVELOPMENT AND LICENSING

  • Song, Chul-Hwa;Baek, Won-Pil;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.299-312
    • /
    • 2007
  • The program on thermal-hydraulic evaluation by testing and analysis (THETA) for the development and licensing of the new design features in the APR1400 (Advanced Power Reactor-1400) is briefly introduced with a presentation on the research motivation and typical results of the separate effect tests and analyses of the major design features. The first part deals with multi-dimensional phenomena related to the safety analysis of the APR1400. One research area is related to the multidimensional behavior of the safety injection (SI) water in a reactor pressure vessel downcomer that uses a direct vessel injection type of SI system. The other area is associated with the condensation of steam jets and the resultant thermal mixing in a water pool; these phenomena are relevant to the depressurization of a reactor coolant system (RCS). The second part describes our efforts to develop new components for safety enhancements, such as a fluidic device as a passive SI flow controller and a sparger to depressurize the RCS. This work contributes to an understanding of the new thermal-hydraulic phenomena that are relevant to advanced reactor system designs; it also improves the prediction capabilities of analysis tools for multi-dimensional flow behavior, especially in complicated geometries.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source Part One: Material characteristics acting as a carrier for boron compounds during neutron irradiation

  • Ezddin Hutli ;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2984-2996
    • /
    • 2023
  • A 100 kW thermal power pool-type light water reactor and Pu(Be) as a fast neutron source were used to determine the appropriate carrier for irradiating boron-containing samples with neutron beams. The tested materials (carriers) were subjected to neutron beams in the reactor's tangential channel. The geometrical arrangement of experimental facilities relative to the neutron beam trajectory, as well as the effect of sample thickness on the count rate, were investigated. The majority of the detectable charged particles emitted by the neutron beam's interaction with tested materials and the detector's detecting layer are protons (recoiled hydrogen) and particles generated in nuclear reactions (protons and alpha particles), respectively. Stopping and Range of Ions in Matter (SRIM) software was used to do theoretical calculations for the range of expected released particles in various materials, including human tissue. The results of measurement and calculation are in good agreement. According to experiments and theoretical calculations, the number of protons emitted by tissue-like materials may commit a dose comparable to that of boron capture reactions. Furthermore, the range of protons is significantly larger than that of alpha particles, which most probably changes dose distribution in healthy cells surrounding the tumor, which is undesirable in the BNCT approach.

The Analysis of Flow Distribution in the Core Channel of the HANARO Flow Simulated Test Facility (하나로 유동모의 시험설비의 노심채널 유동분포 해석)

  • Park Y C.;Kim K. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.151-154
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulated test facility has been developed for the verification of structural integrity of those experimental facilities prior to loading In the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate similar flow characteristics to the HANARO. This paper describes an analysis of the flow distribution of the cote channel and compares with the test results. As results, the analysis showed similar flow characteristics compared with those in the test results.

  • PDF

The Cooling Characteristics for Circular Irradiation Hole under Suppressing Jet Flow at Guide Tube in HANARO (안내관 제트유동 억제시의 하나로 원형 조사공의 냉각특성)

  • Wu S. I.;Park P. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.208-213
    • /
    • 2004
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in- pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading it in a circular flow tube (OR-5). A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to calculate the hole size of a orifice inserted in the circular irradiation hole and to study the flow characteristics through the guide tube under reactor normal operation and loading the target. As results, the results show that the hole size of orifice was 31 mm of the inner diameter to suppress the guide tube jet flow and the coolant safely cooled the target of fission moly after inserting the orifice to the flow tube.

  • PDF

Development of Coolant Flow Simulation System for Nuclear Fuel Test Rigs (핵연료조사리그 냉각수 유동 모의장치 개발)

  • Hong, Jintae;Joung, Chang-Young;Heo, Sung-Ho;Kim, Ka-Hye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2015
  • To remove heat generated during a burn-up test of nuclear fuels, the heat generation rate of nuclear fuels should be calculated accurately, and a coolant should be circulated in the test loop at an adequate flow rate. HANARO is an open pool-type reactor with an independent test loop for the burn-up test of nuclear fuels. A test rig is installed in the test loop, and a coolant is circulated through the test loop to maintain the temperature of the nuclear fuel rods within a desired temperature during an irradiation test. The components and sensors in the test rig can be broken or malfunction owing to the flow-induced vibration. In this study, a coolant flow simulation system was developed to verify and confirm the soundness of components and sensors assembled in the test rig with a high flow rate of the coolant.

Cooling Tower Overhaul of Secondary Cooling System in HANARO (하나로 2 차 냉각탑의 공장분해수리)

  • Park, Young-Chul;Lee, Young-Sub;Kim, Yang-Gon;Jung, Hoan-Sung;Lim, In-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2714-2719
    • /
    • 2007
  • HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 $^{\circ}C$ in summer and the reactor is operated with the full power.

  • PDF

FLOW DISTRIBUTION IN THE CORE OF HANARO AFTER SUPPRESSING THE JET FLOW IN THE GUIDE TUBE USED FOR LOADING FISSION MOLY TARGET (Fission Moly 표적을 장전하기 위한 안내관의 제트유동 억제 후 하나로 노심 유량분포)

  • Park Yong Chul;Lee Byung Chul;Kim Bong Soo;Kim Kyung Ryun
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.66-71
    • /
    • 2005
  • HANARO, a multi-purpose research reactor, 30 MWth open-tank-in-pool type, is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and a target handling tool is under development for loading and unloading it in a circular flow tube (OR-5) of HANARO. A guide tube is extended from the reactor core to the top of the reactor chimney for easily loading the target under a normal operation of the reactor. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube. The jet flow was suppressed in the guide tube after reducing the inner diameter of a flow restriction orifice installed in the OR-5 flow tube for adding the pressure difference in the flow tube. This paper describes an analytical analysis to calculate the flow distribution in the core of HANARO after suppressing the jet flow of the guide tube. As results, it was confirmed through the analysis results that the flow distribution in the core of HANARO were not adversely affected.

Flow Distribution in the Core of the HANARO After Suppressing the Jet Flow in the Guide Tube used for Loading Fission Moly Target. (Fission Moly 표적을 장전하기 위한 안내관의 제트유동 억제 후 하나로 노심유량분포)

  • Park Yong-Chul;Lee Byung-Chul;Kim Bong-Soo;Kim Kyung-Ryun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.70-73
    • /
    • 2005
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in-pool type, is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading it in a circular flow tube (OR-5). A guide tube is extended from the reactor core to the top of the reactor chimney for easily loading the target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube. The jet flow was suppressed in the guide tube after reducing the inner diameter of a flow restriction orifice installed in the OR-5 flow tube for adding the pressure difference in the flow tube after unloading the target. This paper describes an analytical analysis to calculate the flow distribution in the core of the HANARO after suppressing the jet flow of the guide tube. As results, it was confirmed through the analysis results that the flow distribution in the core of the HANARO were not adversely affected.

  • PDF

Fast Running System Code Development to Simulate Transient Behavior of Pool-Type LMFBRs (풀형 고속증식로의 과도 현상을 모사하는 Fast Running System Code개발)

  • Youg Bum Lee;Soon Heung Chang;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 1985
  • A computer model is developed capable of simulating the transient behavior of a pool-type liquid metal-cooled fast breeder reactor (LMFBR). The model, SIMFARP, is a fast running computer code which may be used to simulate the loss of power to any pump(s), a complete loss-of-forced cooling, and the natural circulation behavior. Eight governing equations are derived and a Runge-Kutta algorithm is applied to integrate the eight differential equations. The developed computer program is applied to two cases; loss of electric power to any pump(s), and loss of all external electric supply power without scram in Super-Phenix-I.

  • PDF