• Title/Summary/Keyword: Pool Temperature

Search Result 351, Processing Time 0.024 seconds

A Study of Heat and Fluid Flow for GMA Welding Processes (GMA 용접 공정 중 열 유체에 관한 연구)

  • 김일수;박창언;권욱현;김수광
    • Proceedings of the KWS Conference
    • /
    • 1996.10a
    • /
    • pp.148-152
    • /
    • 1996
  • A transient two-dimensional (2D) model was developed for investigating the heat and fluid flow in old pools and determining velocity profile and temperature distribution for the Gas Metal Arc (GMA) welding process. The mathematical formulation deals with the driving farces (electromagnetic, buoyancy, surface tension and plasma drag forces) as well as energy exchange between the molten filler metal droplet and weld pools. A general thermofluid-mechanics computer program, PHOENICS, was employed to numerically solve the governing equation with the associated source terms. The results of computation have shown that the electromagnetic and surface tension farces as will as the molten filler metal droplet have major influence in shaping the weld pool geometry.

  • PDF

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.1-8
    • /
    • 2005
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the molten pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.

Performance Based Design of Passive Fire Protection Using Consequence Analysis (사고 영향 분석을 이용한 성능위주의 내화설계)

  • Han, Dong-Hoon;Lee, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2004
  • Performance based design is a recent evolutionary step in the process of designing fire protection systems. In essence, it is a logical design process resulting in a solution that achieves a specified performance. Sometimes the prescriptive solutions presented in various codes and standards are too expensive or inflexible. Often the solutions do not and enables optimization of a solution for cost and function. In this study, performance based design was carried out to determine the extent of passive fire protection for oil terminal facilities. The results of performance based design were compared with those of prescriptive code based design. Performance based design is not always more economic than prescriptive code based design but provides more reliable and effective design that is fit for the purpose.

Prediction of Nuggest Shape by Finite Element Modeling in Arc-spot Welding (유한요소 모델링을 이용한 아크 스폿 용접의 너깃 형상 예측)

  • 황종근;장경복;김기순;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.84-90
    • /
    • 1999
  • The shape of weld nuggest in arc spot welding of 304 stainless steel was found by searching thermal history of a weld joint through a three-dimensional finite element model. The problem consists of one in which the finite element mesh is growing continuously in time in order to accomodate metal transfer in arc spot welding using element rebirth technique. The analysis was performed on the basis of experimental results. The finite element program MARC, along with a few user subroutines, was employed to obtain the numerical results. Temperature-dependent thermal properties, stir effect in weld pool, effect of phase transformation, and the convective and radiative boundary conditions are included in the model. Numerically predicted shape of weld nuggest is compared with the experimentally observed shape.

  • PDF

Three-Dimensional Finite Element Modeling of Laser Cladding Process (레이저 클래딩 공정의 3차원 유한요소 모델링)

  • Zhao Guiping;Si Ho-Mun;Lee Heungshik;Cho Chongdu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.279-288
    • /
    • 2004
  • This paper describes a three-dimensional transient finite element model for a laser cladding process. In the model, an adaptive finite element technique is used for dilution control. Using the proposed finite element model, the effects of process parameters such as scanning speed, laser's power, and preheating on the dilution of clad layer, the shape of melting pool, and the temperature distribution are calculated. It is also shown that the optimal process parameters for the required dilution can be determined from the proposed finite element model. An experiment is performed to validate the proposed model. The numerical results are compared with experimental ones.

Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and thermal stratification phenomena in an experimental facility

  • Audrius Grazevicius;Anis Bousbia-Salah
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1555-1562
    • /
    • 2023
  • Natural circulation phenomena have been nowadays largely revisited aiming to investigate the performances of passive safety systems in carrying-out heat removal under accidental conditions. For this purpose, assessment studies using CFD (Computational Fluid Dynamics) and also 3D thermal-hydraulic system codes are considered at different levels of the design and safety demonstration issues. However, these tools have not being extensively validated for specific natural circulation flow regimes involving flow mixing, temperature stratification, flow recirculation and instabilities. In the present study, an experimental test case based on a small-scale pool test rig experiment performed by Korea Atomic Energy Research Institute, is considered for code-to-code and code-to-experimental data comparison. The test simulation is carried out using the FLUENT and the 3D thermal-hydraulic system CATHARE-2 codes. The objective is to evaluate and compare their prediction capabilities with respect to the test conditions of the experiment. It was observed that, notwithstanding their numerical and modelling differences, similar agreement results are obtained. Nevertheless, additional investigations efforts are still needed for a better representation of the considered phenomena.

Evaluation of temperatures and flow areas of the Phebus Test FPT0

  • Koji Nishida;Naoki Sano;Seitaro Sakurai;Michio Murase
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.886-892
    • /
    • 2024
  • The cladding temperatures and axial mass distribution computed by MAAP5 were compared with their measured values in the test bundle of the Phebus Test FPT0. The computed cladding temperatures were in good agreed with the measured values in the pre-transient phase. In the transient heat-up phase, the computed temperatures were overestimated by the Baker-Just correlation in MAAP5, but the computed temperatures could simulate the subsequently measured values. The computed mass distribution in the axial direction was in qualitative agreement with the measured one for post-test fuel damage observations. The calculated flow areas of inner and outer regions in the test bundle were compared with the photographic observations. MAAP5 computed them at the height of 0.2 m where the molten pool formed was in qualitative agreement with the photographic observations. It was found that the remaining steam flow paths might be caused by the gas-liquid two-phase flow counter-current flow limitation.

Observation of the Cold-air Drainage and Thermal Belt Formation in a Small Mountainous Watershed by Using an Infrared Imaging Radiometer (적외선 영상 복사계를 이용한 산간집수역의 찬공기 배수와 온난대 형성 관측)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.79-86
    • /
    • 2011
  • Cold-air drainage and pooling occur in most mountain valleys at night. Local climates with cold-air pooling could affect phenology and distribution of crop plants. A high resolution infrared imaging radiometer was used to visualize the cold-air drainage and thermal belt formation over a small mountainous watershed (ca. $10{\times}5{\times}1$ km for the maximum length${\times}$width${\times}$depth). Thermal images on $640{\times}480$ pixels were scanned across the Akyang valley (south of Mt. Jiri National Park) by the radiometer installed at a local peak ('Hyongjebong', 1,117 m a.s.l.) at dawn of 17 May 2011, when the synoptic condition was favorable for the surface cooling and cold-air drainage. Major findings are: (1) Cold-air drainage and accumulation was clearly identified by the lowest brightness temperature mainly at the valley bottom. (2) So-called 'thermal belt' with higher brightness temperature was found partway up the valley sidewalls and showed up to $5^{\circ}C$ departure from the valley bottom temperature. (3) Digital thermography showed feasibility for validation of the high definition geospatial temperature models currently in use for the plot-specific agrometeorological service.

A Study on Heat Transfer Characteristics of a Closed Two-Phase Thermosyphon with a Low Tilt Angle (낮은 경사각을 갖는 밀폐형 2상 열사이폰의 열전달 특성에 관한 연구)

  • 김철주;강환국;김윤철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • In lots of application to heat exchanger systems, closed two-phase thermosyphons are tilted from a horizontal. If the tilt angle, especially, is less than 30$^{\circ}$, the operational performances of thermosyphon are highly dependent on tilt angle. The present study was conducted to better understand such operational behaviors as mech-anni는 of phase change, and flow patterns inside a tilted thermosyphon. For experiment, an ethanol thermosyphon with a 35% of fill charge rate was designed and manufactured, using a copper tube with a diameter 19mm and a length 1500mm. Through a series of test, the tilt angle was kept constant at each of 4 different values in the range 10~25deg. and the heat supply to the evaporator was stepwisely increased up to 30㎾/$m^2$. When a steady state was established to the thermosyphon for each step of thermal loads, the wall temperature distribution and vapor temperature at the condenser were measured. The wall temperature distributions demonstrated a formation of dry patch in the top end zone of the evaporator, with a values of temperature 20~4$0^{\circ}C$ higher than the wetted surface for a moderate heat flux q≒20㎾/$m^2$. Inspite of the presence of hot dry patch, however, the mean values of boiling heat transfer coefficient at the evaporator wall were still in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film condensation theory on tilted plate. Using those two expressions, a correlation was formulated as a function of heat flux and tilt angle, to determine the total thermal resistance of a tilted thermosyphon. The correlation formula showed a good agreement with the experimental data within 20%.

  • PDF

Review of Hazard Test of Combustion Gas and Exhaust Temperature of Acrylic Fire Protection Paint (아크릴계 내화도료 연소가스의 유해성 평가와 배기온도에 대한 고찰)

  • Jeon, Soo-Min;Kim, Jae-Jun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • A fire resistance certification needs to be obtained before fire protection paint can be used in Korea. In the case of paint, the tests for certification are fire, gas hazard and bond strength. According to the hazard test standard of combustion gas, 16 mice are sacrificed every test. Therefore, there are ethical problems for the experimenter and legal problems for the laboratory. Accordingly, many alternatives are being assessed, such as combustion gas analysis, but they have not replaced animal testing yet. With gas hazard testing, the exhaust gas temperature can be measured. The property of the initial reaction of a specific fire paint can be characterized by this temperature. The purpose of this study was to consider the improvement point for a gas hazard test through comparative analysis of the exhaust temperature and the time of death of the mice.