Three-Dimensional Finite Element Modeling of Laser Cladding Process

레이저 클래딩 공정의 3차원 유한요소 모델링

  • Published : 2004.10.01

Abstract

This paper describes a three-dimensional transient finite element model for a laser cladding process. In the model, an adaptive finite element technique is used for dilution control. Using the proposed finite element model, the effects of process parameters such as scanning speed, laser's power, and preheating on the dilution of clad layer, the shape of melting pool, and the temperature distribution are calculated. It is also shown that the optimal process parameters for the required dilution can be determined from the proposed finite element model. An experiment is performed to validate the proposed model. The numerical results are compared with experimental ones.

Keywords

References

  1. S. Kou, S. C. Hsu, R. Mehrabian, Metall. Trans., B 12 (1981) 33
  2. P. S. Mohanty, J. Mazumder, Metall. Mater. Trans., B 29 (1998) 1269
  3. Kar, J. Mazumder, Metall. Trans., A 20 (1989) 363
  4. Chan, J. Mazumder, M. M. Chen, Metall. Trans. A 15 (1984) 2175
  5. J. D. Damborenea, Surf. Coat. Tech., 100 (1998) 377 https://doi.org/10.1016/S0257-8972(97)00652-X
  6. M. Bamberger, W. D. Kaplan, B. Medres, L. Shepeleva, J. Laser. Applications, 10 (1998) 29 https://doi.org/10.2351/1.521829
  7. Kar, J. Mazumder, Laser Processing Surface Treatment and Film Deposition, (1996) 129
  8. Kar, J. Mazumder, Acta Metal. Mater., 36 (1988) 701 https://doi.org/10.1016/0001-6160(88)90104-6
  9. A. Rostami, A. Raisi, Numer. Heat Tr. A-Appl., 31 (1997) 783 https://doi.org/10.1080/10407789708914064
  10. M. Picasso, C. F. Marsden, J. D. Wagniere, A. Frenk, M. Rappaz, Metall. Mater. Trans., B 25 (1994) 281
  11. P. Nithiarasu, Int. J. Heat. Mass. Transf., 36 (2000) 223 https://doi.org/10.1007/s002310050389
  12. A. Mahrle, J. Schmidt, D. Weiss, Int. J. Heat. Mass. Transf., 36 (2000) 117 https://doi.org/10.1007/s002310050373
  13. U. Ziegler, Comput. Phys. Commun., 116 (1999) 65 https://doi.org/10.1016/S0010-4655(98)00139-8
  14. J. M. Yellup, Surf. Coat. Tech., 71 (1995) 121 https://doi.org/10.1016/0257-8972(94)01010-G
  15. Y. Yang, Applied Surface Science, 140 (1999) 19 https://doi.org/10.1016/S0169-4332(98)00320-1
  16. F. A. Hoadley, M. Rappaz, Metall. Trans., B 23 (1992) 641
  17. J. D. Kim, Y. Peng, KSME Int. J., 14 (2000) 177 https://doi.org/10.1007/BF03184784
  18. Y. T. Pei, J. T. M. De Hosson, Acta. Mater., 48 (2000) 2617 https://doi.org/10.1016/S1359-6454(00)00065-3
  19. G. Zhao, H. M. Si, C. Cho, J. D. Kim, J. Kor. Soc. Precision Eng., 18 (2001) 134
  20. Y. Li, J. Ma, Surf. Coat. Tech., 90 (1995) 1 https://doi.org/10.1016/S0257-8972(96)03022-8
  21. L. J. Li, J. Mazumder, Trans. Metall. Soc. AIME, (1984) 35
  22. K. Uenishi, K. F. Kobayashi, Intermetallics, 7 (1997) 553 https://doi.org/10.1016/S0966-9795(98)00071-5
  23. J. D. Kim, Y. Peng, Opt. Laser Eng., 33 (2000) 299 https://doi.org/10.1016/S0143-8166(00)00046-4