• Title/Summary/Keyword: Pool Combustion

Search Result 44, Processing Time 0.025 seconds

Thermal Effects in the Pool Fire of Fuels(I) (석유류 POOL FIRE에 있어서의 열적인 영향(I))

  • 정국삼;강민호;이덕영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 1996
  • This paper was concerned with pool fire about many used kerosene and diesel oil. In order to know the thermal effects of kerosene and diesel oil, temperature change in the pool fire of these fuels were obtained as a variation of combustion time and the tank's height and diameter by using the data acquisition system, And fuel combustion velocity were derived as a function of the diameter and wall thickness of tanks and combustion time. As a result, when the tank's height was 15㎝, the greater diameter the higher temperature rising regardless of tank's wall thickness and fuels. But, when the tank's height is 30㎝, temperature rising was not higher than 15㎝. Also, temperature rising in the pool fire of kerosene much higher than diesel oil. Kerosene's combustion velocity was about two times faster than diesel oil. And, kerosene's combustion velocity was increased according to the increasing of tank's diameter and combustion time. But, diesel oil's combustion velocity was a little increased or not. Surrounding temperature change of tank with the pool fire was obtained temperature distribution of 0∼35℃ according to the change of tank's diameter and distance from the tank's wall.

  • PDF

Combustion Characteristics of Pool and Whirl Fire on Methanol by Height of Fire Source using the Small Scale (화점높이 변화에 따른 메탄올의 소규모 Pool 및 Whirl Fire의 연소특성)

  • Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.73-78
    • /
    • 2012
  • This study is intended to understand flame behavior of pool and whirl fire by height of fire source. Liquid fuel was methanol which is used in many studies for pool and whirl fire. Size of vessel was $100{\times}100{\times}50$ and the vessel was made by stainless steel. Combustion time, mass loss rate, flame temperature, flame height and air entrainment rate from the outside to flame were measured, and flame behavior was visualized with video camera. Based on the experiment, it was found that combustion characteristics by height of fire source got a more effect on whirl fire than pool fire.

Combustion Characteristics of Pool Fire by Height of Fire Source (화점높이 변화에 따른 Pool Fire의 연소특성)

  • Park, Hyung-Ju;Cha, Jong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4671-4676
    • /
    • 2010
  • This study is intended to understand flame behavior of the pool fire by height of fire source. Liquid fuels were methanol and n-Heptane which are used in many studies of pool fire. Size of vessel was $100mm{\times}100mm{\times}50mm$ and the vessel was made by stainless steel. Combustion time, mass loss rate, flame temperature, flame height and air entrainment rate from the outside to flame were measured, and flame behavior was visualized with video camera. Based on the experiment, it was found that combustion characteristics of pool fire was decreased according to increase of height of fire source because entrainment volume of relative cold air was increased from the outside to flame.

Experimental Study for Keeping a Melting Pool in a Waste Pyrolysis Melting Incinerator (폐기물 열분해 용융소각로의 용탕 유지를 위한 실험적 연구)

  • Kim, Bong-Keun;Park, Ju-Won;Yu, Tae-U;Yang, Won;Jeun, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.151-155
    • /
    • 2006
  • The large amount of energy is consumed in a process for keeping the high temperature melting pool. For this reason, in addition to the wastes input to keep the high temperature melting pool, it is necessary for an auxiliary fuel and LOx to throw into the melting pool. So in this study, using a new melting furnace system, the experiments to keep the melting pool with minimal energy without throwing an auxiliary fuel and LOx was carried out. Also it is hoped that the results of the experiment will be available to analyze keeping a melting pool and behavior in a melting furnace.

  • PDF

Analysis on the Results of Measured Concentration of the Combustion Gases Considering Respiration Characteristics in Gasoline Pool Fire (가솔린 풀 화재에서 인체 호흡량 변화를 고려한 연소가스 농도 측정 결과 분석)

  • Choi, Seung Il;Kang, Jung Ki;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.83-88
    • /
    • 2019
  • This study examined the concentration of combustion gases while considering low ventilation and respiration frequency. A one-quarter-size ISO 9705 room corner test was performed. The concentrations of carbon monoxide and oxygen were measured in each case with the continuous inhalation of combustion gas with low ventilation (2, 6, and 10 LPM) and different respiration frequencies (2 s, 5 s, and infinity). The combustion of a gasoline pool fire in the compartment had a theoretical heat release rate of 5.34 kW. The results show that the deviation of the gas concentrations becomes higher as the low ventilation increases compared to the respiration frequency. In addition, as the respiration frequency increases, the variation in the minimum oxygen concentration is larger than the average value, while in the case of carbon monoxide, the variation in the average value is larger than the maximum value. These results show that the inhalation characteristics of refugees should be considered to investigate fires.

Pool Combustion of Iso-Propanol Fuel including IPA and PCBs in different Type Vessels

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.102-108
    • /
    • 2006
  • On the refutation demanded for a control of various toxic substances. PCBs(poly chlorinated biphenyl) has a fatal poisonous matter in the ecosystem and the environmental pollution as it Is a kind of stable chemical substance. Especially, the gross Product of PCBs is estimated at about one million tonnage all over the world. However it is kept on storing in untreated state, then has a deterioration by the Prolonged storage and a risk of overflowing. Therefore, this research examined the fundamental characteristics of combustion and emission for the target of using the IPA (iso-propyl alcohol) solution as a part of PCBs control. IPA was filled to three kinds of Vessel, i.e. Vessel I, II, and III, and then was investigated as follows combustion shape, flame temperature. mass burning velocity, and PM(Particulate matter). A radial thermometer and a C-A thermocouple measured the flame temperature, and the optical extinction method by using He-Ne laser and the filter weight method used in the PM measurement. As a result, with an increasing of L/S ratio, the flame length become shorter and the burning velocity is more rapid, but the particulate matters is higher. It is supposed that the air flow rate is high on Vessel. and then the combustion is Promoted in the surface area of the upstream zone. The future works plan to investigate the characteristics with an using of the mixing of IPA and PCBs

A Study on the Characteristics of Pool Fire (Pool 화재의 연소 특성에 관한 연구)

  • 오규형;나선종;이성은
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.39-44
    • /
    • 2004
  • This study is intended to understand flame behavior of the pool fire. Liquid fuels were acetone, methanol, hexane and heptane which are used in many industries. Diameter of vessel was varied from 50 mm to 400 mm and the vessel was made by stainless steel and copper. Combustion time, temperature of vessel wall and heat flux of flame were measured, and flame behavior was visualized with video camera. Based on the experiment, it was found that the burning velocity and flame height was increased according to increase of vessel diameter, and vortex shedding frequency was inverse proportion to vessel diameter. And the characteristics of pool fire were affected by physical and chemical properties of liquid fuel and the vessel materials.

The Effects of Spray Characteristics of Water Mist on the Fire Suppression of Liquid Pool Fire (미분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향)

  • Oh, Sang-Youp;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.215-221
    • /
    • 2003
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is $115{\sim}180{\mu}m$ with nozzle A and $130{\sim}190{\mu}m$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of O2 concentration.

  • PDF

Analysis of Heat Release Rate with Various Diameter of Heptane Pool Fire Using Large Scale Cone Calorimeter (헵탄의 화원 직경 변화를 고려한 대형콘칼로리미터의 발열량 측정 결과 분석)

  • You, Woo Jun;Nam, Dong-Gun;Youm, Moon Cheon;Kim, Sung-Chan;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • The present study has been conducted to analyse the effects of various pool diameters on the measurement of heat release rate (HRR) of heptane fire using large scale cone calorimeter (LSC). The burning rate which is the major parameter for HRR compared with the previous model suggested by A. Hamins. The combustion efficiency for heptane by oxygen consumption method is about 91%, which is almost same with the previous results of 92% suggested by J. Gore. The convective HRR by enthalpy consumption method was 54% lower than HRR by oxygen consumption method. This results are practical use for establishing the reliability of heat release rate for fire experiment.

Comparison of the Flame Height of Pool Fire according to Combustion Models in the FDS (FDS의 연소모델에 따른 풀화재의 화염높이 비교)

  • Han, Ho-Sik;Hwang, Cheol-Hong;Oh, Chang Bo;Choi, Dongwon;Lee, Sangkyu
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.42-50
    • /
    • 2018
  • The effect of sub-grid turbulence and combustion models on the mean flame height in a heptane pool fire according to the Fire Dynamics Simulator (FDS) version (5 and 6) based on Large Eddy Simulation (LES) was examined. The heat release rate for the fire simulation was provided through experiments performed under identical conditions and the predictive performance of the mean flame height according to FDS version was evaluated by a comparison with the existing correlation. As a result, the Smagorinsky and Deardorff turbulence models applied to FDS 5 and 6, respectively, had no significant effects on the mean flow field, flame shape and flame height. On the other hand, the difference in pool fire characteristics including the mean flame height was due mainly to the difference in the mixture fraction and Eddy Dissipation Concept (EDC) combustion models applied to FDS 5 and 6, respectively. Finally, compared to FDS 6, FDS 5 provided the predictive result of a significantly longer flame height and more consistent mean flame height than the existing correlation.