• Title/Summary/Keyword: Pomelo peel

Search Result 2, Processing Time 0.017 seconds

Preparation and Characterization of Carrageenase Immobilized onto Polyethyleneimine-Modified Pomelo Peel

  • Qin Yin;Christopher G. Batbatan;Yongxing Li;Yonghui Zhang;Qiuming Yang;Anfeng Xiao
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.132-140
    • /
    • 2024
  • In this study, carrageenase immobilization was evaluated with a concise and efficient strategy. Pomelo peel cellulose (PPC) modified by polyethyleneimine (PEI) using the physical absorption method was used as a carrier to immobilize carrageenase and achieved repeated batch catalysis. In addition, various immobilization and reaction parameters were scrutinized to enhance the immobilization efficiency. Under the optimized conditions, the enzyme activity recovery rate was more than 50% and 4.1 times higher than immobilization with non-modified pomelo peels. The optimum temperature and pH of carrageenase after immobilization by PEI-modified pomelo peel, at 60℃ and 7.5 respectively, were in line with the free enzyme. The temperature resistance was reduced, inconsistent with free enzyme, and pH resistance was increased. A significant loss of activity (46.8%) was observed after reusing it thrice under optimal reaction conditions. In terms of stability, the immobilized enzyme conserved 76.0% of the initial enzyme activity after 98 days of storage. Furthermore, a modest decrease in the kinetic constant (Km) value was observed, indicating the improved substrate affinity of the immobilized enzyme. Therefore, modified pomelo peel is a verified and promising enzyme immobilization system for the synthesis of inorganic solvents.

Effects of Soil Chemical Properties in Orchards on 'Niitaka' Pear Quality (과원토양의 화학적 환경이 신고 배의 품질에 미치는 영향)

  • Kim, Ik-Youl;Chang, Tae-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.253-259
    • /
    • 2008
  • Soil environmental conditions can affect nutrient availability during growth stage of tree fruit. We investigated the cause of disorderd fruit by the influence of soil chemical properties in orchard soil, composition of mineral nutrient in leaves and fruit to occur physiological disorderd fruit at four locations (Ulsan, Gyeongju, Pyeongtaek, Ansung) compared to healthy. There were significantly different (P=0.05) in exchangeable Ca, K, Mg and total nitrogen content in orchard soil between physiological disordered fruit and healthy fruit. The exchangeable Ca content in orchard soil caused by physiological disordered fruit was statistically lower than that of healthy fruit. However, exchangeable K, Mg and total nitrogen contents were higher than that healthy (P=0.05). There was a significant difference (P=0.05) in Ca content between physiological disordered fruit and healthy. Ca content in fruit flesh of physiological disorderedfruit was statistically lower than that of healthy. The physiological disordered fruit was a higher ratio of Mg/Ca in fruit flesh and peel compared to healthy fruit and also the ratios of N/Ca and K/Ca in a leaf were higher. The negative correlation between Ca and K, and Ca and Mg was detected in the fruit flesh of physiological disordered fruit. Therefore, we concluded that insufficient Ca content in fruit may cause 'the physiological disorder' pomelo disease and high content of N, exchangeable K and Mg ion in the soil solution might be disturbs exchangeable Ca ion to be absorbed in fruit.