• Title/Summary/Keyword: Polyvinylidene Fluoride

Search Result 241, Processing Time 0.021 seconds

Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices

  • Nguyen, Duc-Nam;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.205-215
    • /
    • 2019
  • A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health monitoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were characterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100% strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young's modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The $300{\mu}m$ thick composite has a 14% volume fraction of PVDF fibers and produces high piezoelectricity with piezoelectric charge constants $d_{31}=19pC/N$ and $d_{33}=34pC/N$, and piezoelectric voltage constants $g_{31}=33.9mV/N$ and $g_{33}=61.2mV/N$. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.

Characterization of Composite Frame for Enhancing Energy Harvesting Function of a Smart Shoes (스마트 슈즈의 에너지 하베스팅 기능향상을 위한 복합재료 프레임 특성평가)

  • Lee, Ho-Seok;Jung, In-Jun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.400-405
    • /
    • 2021
  • In this study, a composite material frame was designed to increase the energy harvesting efficiency of polyvinylidene fluoride (PVDF) ribbon harvesters which are installed inside smart shoes. In order to minimize the amount of deformation in the load direction of the frame, it was designed using carbon continuous fiber composites and its complex shaped structure was manufactured using a 3D printer. In order to calculate the amount of deformation of the insole and midsole of the shoes under the condition of the load generated during walking, the insole and midsole were modeled using the distributed spring elements. Using finite element analysis, the elongation of ribbon-type harvesters mounted on smart shoes was calculated during walking. It is expected that the predicted elongation of the harvester can be utilized to increase the energy harvesting efficiency of smart shoes.

A Study on Efficiency of Energy Conversion for a Piezoelectric Power Harvesting Using Polyvinylidene Fluorid Film (PVDF 필름을 이용한 효과적인 에너지 하베스팅에 관한 연구)

  • Hur, Won-Young;Lee, Tae-Yong;Lee, Kyung-Chun;Hwang, Hyun-Suk;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.422-426
    • /
    • 2011
  • Piezoelectric materials can be used to convert mechanical energy into electrical energy. In this study, we investigated the possibility of harvesting from mechanical vibration force using a high efficient piezoelectric material-polyvinylidene fluoride (PVDF). A piezoelectric energy harvesting system consists of rectifier, filter capacitor, resistance. The experiments were carried out with impacting force to PVDF film with the thickness of 1 ${\mu}m$. The output power was measured with change in the load resistance value from 100 ${\Omega}$ to 2.2 $M{\Omega}$. The highest power was obtained under optimization by selection of suitable resistive load and capacitance. A power of 0.3082 ${\mu}W/mm^2$ was generated at the external vibration force of 5 N (10 Hz) across a 1 $M{\Omega}$ optimal resistor. Also, the maximum power of 0.345 ${\mu}W/mm^2$ was generated at 22 ${\mu}F$ and 1 $M{\Omega}$. The developed system was expected at a solution to overcome the critical problem of making up small size energy harvester.

Characterization of the PVDF Fibers Fabricated by Hybrid Wet Spinning (하이브리드 습식 공정을 통한 PVDF 섬유의 제조 및 특성에 관한 연구)

  • Jeong, Kun;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) as a representative polymer with the piezoelectric property has been studied since the 1960s. Crystalline structure of poly(vinylidene fluoride) polymer is composed of five different crystal structure of the polymer as a semi-crystalline. Among the various crystal structures, ${\beta}-type$ crystal exhibits a piezoelectricity because the permanent dipoles are aligned in one direction. Generally ${\beta}-form$ crystal structure can be obtained through the transformation of the ${\alpha}-form$ crystal structure by the stretching and it can increase the amount through the after treatment as poling process after stretching. ${\beta}-form$ crystal structure the PVDF fibers produced by wet spinning is formed through a diffusion mechanism of a polar solvent in the coagulation bath. However, it has a disadvantage that the diffusion path of the solvent remains as pores in the fiber because the fiber solidification occurs simultaneously with the diffusion of the polar solvent. These pores play a role in reducing effect of poling process owing to effect of disturbances acting on the polarization by the electric field. In this work, the drying method using the microwave was introduced to remove more effectively the residual solvent and the pore within PVDF fibers produced through wet-spinning process and piezoelectric PVDF fibers was produced by transformation of the remaining ${\alpha}$ form crystal structure into ${\beta}-crystal$ structure through the stretching process.

Blend membranes based on sulfonated-fluorinated poly(arylene ether)s and chemically-modified polyvinilydene fluoride for high performance PEMFC (고분자 전해질 막 연료 전지의 고성능을 위한 술폰화된 과불소계 poly(arylene ehter)s와 화학적으로 변형된 polyvinilydene fluoride의 blend 막 연구)

  • Kim, Na-Young;Seo, Min-Seon;Lee, In-Ja
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.426-426
    • /
    • 2008
  • Blend membranes were prepared by solvent casting method from sulfonated fluorinated poly(arylene ether)s (SDFF) and chemically modified polyvinylidene fluoride (mPVdF) in isopropanol and were evaluated as proton exchange membrane electrolytes in PEMFC. $^1H$-NMR, differential scanning calorimeter and thermogravimetric analysis was utilized to characterize the structure of the blend membranes (SDFF/mPVDF) and effects of mPVDF content on the properties of the membrane such as water uptake and proton conductivity were also investigated.

  • PDF

Surface Hydrophilization of PVDF Membrane by Thermal Polymerization Lamination Process (열중합 Lamination 공정에 의한 PVDF 분리막의 표면 친수화)

  • Lee, Se-Min;Byun, Young-Jin;Kim, Jin-Ho;Kim, Sung Soo
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • Hydrophilic monomers were polymerized for lamination on polyvinylidene fluoride (PVDF) membrane surface for hydrophilization of the membranes. Hydrophilization reduced the contact angle from $95^{\circ}$ to $55^{\circ}$ and enhanced the water flux by 10 times while it reduced the bovine serum albumin (BSA) adsorption amount to 1/4 level. Thermal polymerization process was optimized by examining several operation parameters. Dimethyl oxobuthyl acrylamide (DOAA) showed the best effect due to its better hydrophilicity than others. Increase of amount of monomer enhanced the performance until the optimum concentration of 30 wt%, beyond which excess amount of monomer resulted in homopolymerization to deteriorate the performance. Azobis (isobutyronitrile)(AIBN) initiator has greater activation temperature range than benzoyl peroxide (BPO) and it showed better hydrophilation performance. Two stage lamination process, application of initiator followed by monomer addition, was more effective than one stage process, addition of initiator and monomer at once, which still reduced the contact angle but also reduced the water flux by pore blocking phenomena.

Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part II : Performance Study of Membrane Capacitive Deionization Process (폴리비닐플루오라이드 불균질 이온교환막을 이용한 막 결합형 축전식 탈염공정의 탈염성능 Part II : 불균질 이온교환막의 탈염성능)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.240-247
    • /
    • 2017
  • In this study, the heterogeneous ion exchange membranes prepared by the combination of the carbon electrode and mixed the cation and anion exchange polymers and polyvinylidene fluoride as the basic polymer together were made to recognize the efficiency of the salt removal for the application of the membrane capacitive deionization process. The mixing weight ratio of the solvent, basic polymer and ion exchange resin was 7 : 2 : 1 and this mixed solution was directly cast on the electrode. As for the operating conditions of the adsorption voltage and time, feed flow rate, desorption voltage and time of the feed solution NaCl 100 mg/L, the salt removal efficiencies (SRE) were measured. Apart from this NaCl, the $CaCl_2$ and $MgSO_4$ solutions were investigated in terms of SRE as well. Typically, SRE for NaCl 100 mg/L solution under the conditions of adsorption voltage/time, 1.5 V/3 min, desorption voltage/time -0.1 V/3 min, was shown 98%. And for the $CaCl_2$ and $MgSO_4$ solutions, the SREs of 70 and 59% were measured under the conditions of adsorption voltage/time, 1.2 V/3 min, desorption voltage/time -0.5 V/5 min, respectively.

A Evaluation Method for the Effectiveness of Anti-snore Pillow (코골이 방지 베개의 효율성 검증을 위한 방법)

  • Jee, Duk-Keun;Wei, Ran;Im, Jae-Joong;Kim, Hee-Sun;Kim, Hyun-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.545-554
    • /
    • 2011
  • In this study, the parameters of Polysomnography (PSG) test, such as total sleep time, snoring time, had been analyzed to evaluate the effectiveness of a developed anti-snore pillow. The developed anti-snore pillow is made up of two polyvinylidene fluoride (PVDF) vibration sensors, pumps, valves, and air bladders. The two PVDF sensors inside the pillow can acquire the sound signals and the algorithm was perfectly designed to extract snoring by removing unwanted noise accurately and automatically. Once the pillow recognizes snore, a pump inside the hardware activates, and a bladder under the neck area inside the pillow will be inflated. The PSG test was used and two volunteers were participated for the study. The parameters of the PSG results were analyzed to evaluate the effectiveness of the anti-snore pillow. The total sleep time of each volunteer was similar on each phase of test, but the snoring time and the longest snoring episode were significantly decreased with the use of anti-snore pillow. The overall results showed excellent possibilities for reducing snoring for the person who snores during sleep by using the anti-snore pillow. The effectiveness of the anti-snore pillow can be evaluated by the PSG test. Moreover, the relationship between each parameter of PSG test and the quality of sleep will be used for further researches.

  • PDF

Preparation and Desalination Characteristics of Highly Durable Heterogeneous Cation-exchange Membrane Based on Polyvinylidene Fluoride (PVDF) by Casting Method for Electrodialysis (캐스팅법에 의한 전기투석용 고내구성 Polyvinylidene Fluoride (PVDF)계 양이온 불균질 이온교환막 제조 및 탈염특성)

  • Ko, Dae Young;Kim, In Sik;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • This study was carried out to prepare a heterogeneous cation exchange membrane by mixing polyvinylidene fluoride (PVDF), commercial cation exchange resin and sulfonated poly(phenylene oxide)(SPPO) in order to propose an optimum condition for the preparation, and to compare its properties with commercial membrane. Study results show that the ion exchange capacity and electrical resistance were outstanding when the ratio of polymer matrix was less than 30% comparing between PVDF-IER, PVDF-SPPO and PVDF-SPPO-IER. The tensile strength was confirmed that seemed a hard look was five times greater compared to the commercial heterogeneous membrane, despite the weak durability of PVDF resin. Therefore, when chemical and mechanical properties are considered, the optimum mixing ratio between PVDF, IER and SPPO was 30 : 70, at which electric resistance was measured as $3{\sim}5{\Omega}{\cdot}cm^2$, ion exchange capacity as 0.6~1.0 meq/g, while mechanical strength was in a range of $12{\sim}15kgf/cm^2$.

Surface and Corrosion Protection Properties of Fluorine Doped PVDF by Plasma Fluorination (플라즈마 불소화에 의해 제조된 불소 도핑 PVDF의 표면 및 부식방지 특성)

  • Kim, Seokjin;Lim, Chaehun;Kim, Daesup;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-658
    • /
    • 2021
  • Polyvinylidene fluoride (PVDF) is a promising coating material because of its outstanding processability. The PVDF coating, however, has limitations in anti-corrosion application due to its weak hydrophobicity compared to that of other fluoropolymers. In this study, plasma fluorination was performed using carbon tetrafluoride (CF4) gas to improve anti-corrosion properties of PVDF. The fluorine content and hydrophobicity of PVDF were investigated in different CF4 flow rates, followed by the determination of anti-corrosion properties. The fluorine content on the surface of the PVDF film increased by up to 46.70%, but the surface free energy was independent of CF4 flow rate. Meanwhile, the surface roughness of the PDVF film tended to increase by up to 150% and then decrease with increasing CF4 flow rate. It is considered that the plasma fluorination affects the surface free energy due to the introduction of fluorine functional groups and surface etching. In addition, the degree of corrosion of the PVDF-coated Fe plate was significantly reduced from 49.2% to 19.0% compared to that of the uncoated Fe plate. In particular, the degree of corrosion of the fluorinated PVDF-coated Fe plate was 13.6%, which was 28.4% lower than that of the PVDF-coated Fe plate, showing improved anti-corrosion protection.