DOI QR코드

DOI QR Code

A Study on Efficiency of Energy Conversion for a Piezoelectric Power Harvesting Using Polyvinylidene Fluorid Film

PVDF 필름을 이용한 효과적인 에너지 하베스팅에 관한 연구

  • Hur, Won-Young (Department of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Tae-Yong (Department of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Kyung-Chun (Department of Information and Communication Engineering, Sungkyunkwan University) ;
  • Hwang, Hyun-Suk (Department of Electrical Engineering, Seoil University) ;
  • Song, Joon-Tae (Department of Information and Communication Engineering, Sungkyunkwan University)
  • 허원영 (성균관대학교 정보통신공학부) ;
  • 이태용 (성균관대학교 정보통신공학부) ;
  • 이경천 (성균관대학교 정보통신공학부) ;
  • 황현석 (서일대학교 전기공학과) ;
  • 송준태 (성균관대학교 정보통신공학부)
  • Received : 2011.03.04
  • Accepted : 2011.04.05
  • Published : 2011.05.11

Abstract

Piezoelectric materials can be used to convert mechanical energy into electrical energy. In this study, we investigated the possibility of harvesting from mechanical vibration force using a high efficient piezoelectric material-polyvinylidene fluoride (PVDF). A piezoelectric energy harvesting system consists of rectifier, filter capacitor, resistance. The experiments were carried out with impacting force to PVDF film with the thickness of 1 ${\mu}m$. The output power was measured with change in the load resistance value from 100 ${\Omega}$ to 2.2 $M{\Omega}$. The highest power was obtained under optimization by selection of suitable resistive load and capacitance. A power of 0.3082 ${\mu}W/mm^2$ was generated at the external vibration force of 5 N (10 Hz) across a 1 $M{\Omega}$ optimal resistor. Also, the maximum power of 0.345 ${\mu}W/mm^2$ was generated at 22 ${\mu}F$ and 1 $M{\Omega}$. The developed system was expected at a solution to overcome the critical problem of making up small size energy harvester.

Keywords

References

  1. H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham, and H. F. Hofmann, Jpn. J. Appl. Phys., 43, 6178 (2004). https://doi.org/10.1143/JJAP.43.6178
  2. B. K. Choi and W. H. Lee, J. Korean Soc. Precis. Eng., 25 (2008).
  3. S. H. Park and D. C. Lee, J. KIEEME, 11, 221 (1998).
  4. J. T Polasik, Proceedings of SPIE, 5759, 114 (2005). https://doi.org/10.1117/12.598793
  5. E. Minazar, Ultrasonics, 44, 699 (2006). https://doi.org/10.1016/j.ultras.2006.05.141
  6. K Makihar and J. Onoda, Smart Mater. Struct., 15, 1493 (2006). https://doi.org/10.1088/0964-1726/15/5/039
  7. S. R. Platt, S Farritor, and H Haider IEEE, ASME, 10 (2005).
  8. D. Shen, Sensors and Actuators, 154, 103 (2009). https://doi.org/10.1016/j.sna.2009.06.007
  9. C. Green and K. M. Mossi, Iasme Imece, 80426 (2005).
  10. J. W. Sohn, Proc. Imeche, J. Mech. Eng. Sci., 219, 429 (2005). https://doi.org/10.1243/095440605X16947
  11. Y. K. Lee and D. Y. Han, J. KIEEME 13, 786 (2008).
  12. Ramasay, M. J, Proceedings of the Society of Photo optical Instrumentation Engineers, 43332, 429 (2001).
  13. J. W. Sohn and S. B. Choi, J. KSPE, 22, (2005).
  14. D. Koyama and K. Nakamura, Ultrasonics Symposium, 938 (2008).
  15. S. J. Jeong, M. S. Kim, J. S. Song, and H. K. Lee, Sensor and Actuators A, 148, 158 (2008). https://doi.org/10.1016/j.sna.2008.07.007
  16. S. R. Plat, ASME Transactions On Mechatronics, 10 (2005).
  17. E. Minazara, D. Vasic, F. Costa, and G. Poulin, Ultrasonics, 44, 699 (2006). https://doi.org/10.1016/j.ultras.2006.05.141
  18. M. O. Chtiba, J. Sound Vibr., 329, 261 (2010). https://doi.org/10.1016/j.jsv.2009.09.028