• Title/Summary/Keyword: Polynomial iteration

Search Result 30, Processing Time 0.022 seconds

POLYNOMIAL CONVERGENCE OF PREDICTOR-CORRECTOR ALGORITHMS FOR SDLCP BASED ON THE M-Z FAMILY OF DIRECTIONS

  • Chen, Feixiang;Xiang, Ruiyin
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1285-1293
    • /
    • 2011
  • We establishes the polynomial convergence of a new class of path-following methods for semidefinite linear complementarity problems (SDLCP) whose search directions belong to the class of directions introduced by Monteiro [9]. Namely, we show that the polynomial iteration-complexity bound of the well known algorithms for linear programming, namely the predictor-corrector algorithm of Mizuno and Ye, carry over to the context of SDLCP.

POLYNOMIAL CONVERGENCE OF PRIMAL-DUAL ALGORITHMS FOR SDLCP BASED ON THE M-Z FAMILY OF DIRECTIONS

  • Chen, Feixiang
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.127-133
    • /
    • 2012
  • We establish the polynomial convergence of a new class of path-following methods for SDLCP whose search directions belong to the class of directions introduced by Monteiro [3]. We show that the polynomial iteration-complexity bounds of the well known algorithms for linear programming, namely the short-step path-following algorithm of Kojima et al. and Monteiro and Alder, carry over to the context of SDLCP.

COMPOSITION OF BINOMIAL POLYNOMIAL

  • Choi, Eun-Mi
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.183-194
    • /
    • 2007
  • For an irreducible binomial polynomial $f(x)=x^n-b{\in}K[x]$ with a field K, we ask when does the mth iteration $f_m$ is irreducible but $m+1th\;f_{m+1}$ is reducible over K. Let S(n, m) be the set of b's such that $f_m$ is irreducible but $f_{m+1}$ is reducible over K. We investigate the set S(n, m) by taking K as the rational number field.

A New Method of Finding Real Roots of Nonlinear System Using Extended Fixed Point Iterations (확장된 고정점이론을 이용한 비선형시스템의 근을 구하는 방법)

  • Kim, Sung-Soo;Kim, Ji-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.277-284
    • /
    • 2018
  • In this paper, a new numerical method of finding the roots of a nonlinear system is proposed, which extends the conventional fixed point iterative method by relaxing the constraints on it. The proposed method determines the real valued roots and expands the convergence region by relaxing the constraints on the conventional fixed point iterative method, which transforms the diverging root searching iterations into the converging iterations by employing the metric induced by the geometrical characteristics of a polynomial. A metric is set to measure the distance between a point of a real-valued function and its corresponding image point of its inverse function. The proposed scheme provides the convenience in finding not only the real roots of polynomials but also the roots of the nonlinear systems in the various application areas of science and engineering.

NEW INTERIOR POINT METHODS FOR SOLVING $P_*(\kappa)$ LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, You-Young;Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.189-202
    • /
    • 2009
  • In this paper we propose new primal-dual interior point algorithms for $P_*(\kappa)$ linear complementarity problems based on a new class of kernel functions which contains the kernel function in [8] as a special case. We show that the iteration bounds are $O((1+2\kappa)n^{\frac{9}{14}}\;log\;\frac{n{\mu}^0}{\epsilon}$) for large-update and $O((1+2\kappa)\sqrt{n}log\frac{n{\mu}^0}{\epsilon}$) for small-update methods, respectively. This iteration complexity for large-update methods improves the iteration complexity with a factor $n^{\frac{5}{14}}$ when compared with the method based on the classical logarithmic kernel function. For small-update, the iteration complexity is the best known bound for such methods.

  • PDF

A FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING BASED ON A SELF-REGULAR PROXIMITY

  • Liu, Zhongyi;Chen, Yue
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.119-133
    • /
    • 2011
  • This paper proposes an infeasible interior-point algorithm with full-Newton step for linear programming. We introduce a special self-regular proximity to induce the feasibility step and also to measure proximity to the central path. The result of polynomial complexity coincides with the best-known iteration bound for infeasible interior-point methods, namely, O(n log n/${\varepsilon}$).

Robust Nonparametric Regression Method using Rank Transformation

    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.574-574
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

Robust Nonparametric Regression Method using Rank Transformation

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.575-583
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

  • PDF

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-669
    • /
    • 2010
  • In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.