• Title/Summary/Keyword: Polynomial Method

Search Result 1,306, Processing Time 0.025 seconds

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

Development of Quality Assurance Program for the On-board Imager Isocenter Accuracy with Gantry Rotation (갠트리 회전에 의한 온-보드 영상장치 회전중심점의 정도관리 프로그램 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.212-223
    • /
    • 2006
  • Positional accuracy of the on-board imager (OBI) isocenter with gantry rotation was presented in this paper. Three different type of automatic evaluation methods of discrepancies between therapeutic and OBI isocenter using digital image processing techniques as well as a procedure stated in the customer acceptance procedure (CAP) were applied to check OBI isocenter migration trends. Two kinds of kV x-ray image set obtained at OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ},\;270^{\circ}$ and every $10^{\circ}$ and raw projection data for cone-beam CT reconstruction were used for each evaluation method. Efficiencies of the methods were also estimated. If a user needs to obtain an isocenter variation map with full gantry rotation, a method taking OBI image for every $10^{\circ}$ and fitting with 5th order polynomial was appropriate. However for a mere quality assurance (QA) purpose of OBI isocenter accuracy, it was adequate to use only four OBI Images taken at the OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ}\;and\;270^{\circ}$. Maximal discrepancy was 0.44 mm which was observed between the OBI source angle of $90^{\circ}\;and\;180^{\circ}$ OBI isocenter accuracy was maintained below 0.5 mm for a year. Proposed QA program may be helpful to Implement a reasonable routine QA of the OBI isocenter accuracy without great efforts.

  • PDF

Studies on the Time Distribution of Heavy Storms (暴雨의 時間的 分布에 關한 硏究)

  • Lee, Keun-Hoo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 1984
  • This study was carried out to investigate the time distribution of single storms and to establish the model of storm patterns in korea. Rainfall recording charts collected from 42 metheorological stations covering the Korean peninsula were analyzed. A single storm was defined as a rain period seperated from preceding and succeeding rainfall by 6 hours and more. Among the defined single storms, 1199 storms exceeding total rainfall of 80 mm were qualified for the study. Storm patterns were cklassified by quartile classification method and the relationship between cummulative percent of rainfalls and cummulative storm time was established for each quartile storm group. Time distribution models for each stations were prepared through the various analytical and inferential procedures. Obtained results are summarized as follows: 1. The percentile frequency of quartile storms for the first to the fourth quartile were 22.0%, 26.5%, 28.9% and 22.6%, respectively. The large variation of percentile frequency was show between the same quartile storms. The advanced type storm pattern was predominant in the west coastal type storm patterns predominantly when compared to the single storms with small total rainfalls. 3. The single storms with long storm durations tended to show delayed type storm patterns predominantly when compared to the single storms with short storm durations. 4. The percentile time distribution of quartile storms for 42 rin gaging stations was estimated. Large variations were observed between the percentiles of time distributions of different stations. 5. No significant differences were generally found between the time distribution of rainfalls with greater total rainfall and with less total rainfall. This fact suggests that the size of the total rainfall of single storms was not the main factor affecting the time distribution of heavy storms. 6. Also, no significant difference were found between the time distribution of rainfalls with long duration and with short duration. The fact indicates that the storm duration was no the main factor affecting the time distribution of heavy storms. 7. In Korea, among all single storms, 39.0% show 80 to 100mm of total rainfall which stands for the mode of the frequency distribution of total rainfalls. The median value of rainfalls for all single storms from the 42 stations was 108mm. The shape of the frequency distribution of total rainfalls showed right skewed features. No significant differences were shown in the shape of distribution histograms for total rainfall of quartile storms. The mode of rainfalls for the advanced type quartile storms was 80~100mm and their frequencies were 39~43% for respective quartiles. For the delayed type quartile storms, the mode was 80~100mm and their frequencies were 36!38%. 8. In Korea, 29% of all single storms show 720 to 1080 minutes of storm durations which was the highest frequency in the frequency distribution of storm durations. The median of the storm duration for all single storms form 42 stations was 1026 minutes. The shape of the frequency distribution was right skewed feature. For the advanced type storms, the higher frequency of occurrence was shown by the single storms with short durations, whereas for the delayed type quartile storms, the higher frequency was shown gy the long duration single storms. 9. The total rainfall of single storms was positively correlated to storm durations in all the stations throughout the nation. This fact was also true for most of the quartile storms. 10. The third order polynomial regression models were established for estimating the time distribution of quartile storms at different stations. The model test by relative error method resulted good agreements between estimated and observed values with the relative error of less than 0.10 in average.

  • PDF

Possibility Estimating of Unaccessible Area on 1/5,000 Digital Topographic Mapping Using PLEIADES Images (PLEIADES 영상을 활용한 비접근지역의 1/5,000 수치지형도 제작 가능성 평가)

  • Shin, Jin Kyu;Lee, Young Jin;Choi, Hae Jin;Lee, Jun Hyuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.299-309
    • /
    • 2014
  • This paper evaluated the possibility for 1/5,000 digital topographic mapping by using PLEIADES images of 0.5m GSD(Ground Sampling Distance) resolution that has recently launched. Those results of check points by applying the initial RPC(Rational Polynomial Coefficient) of PLEIADES images came out as; RMSE of those were $X={\pm}1.806m$, $Y={\pm}2.132m$, $Z={\pm}1.973m$. Also, if we corrected geometric correction using 16 GCP(Ground Control Point)s, the results of RMSE became $X={\pm}0.104m$, $Y={\pm}0.171m$, $Z={\pm}0.036m$, and t he RMSE of check points were $X={\pm}0.357m$, $Y={\pm}0.239m$, $Z={\pm}0.188m$; which of those results indicated the accuracy of standard adjustment complied in error tolerances of the 1/5,000 scale. Additionally, we converted coordinates of points, obtained by TerraSAR. for comparing with measurements from GPS(Global Positioning System) surveying. The RMSE of comparing converted and GPS points were $X={\pm}0.818m$, $Y={\pm}0.200m$, $Z={\pm}0.265m$, which confirmed the possibility for 1/5,000 digital topographic mapping with PLEIADES images and GCPs. As method of obtaining GCPs in unaccessible area, however, the outcome evaluation of GCPs extracted from TerraSAR images was not acceptable for 1/5,000 digital topographic mapping. Therefore, we considered that further researches are needed on applicability of GCPs extracted from TerraSAR images for future alternative method.

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics (이중 시야 중적외선 광학계 비열화·나르시서스 분석)

  • Jeong, Do Hwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.

Application of Off-axis Correction Method for EPID Based IMRT QA (EPID를 사용한 세기조절방사선치료의 정도관리에 있어 축이탈 보정(Off-axis Correction)의 적용)

  • Cho, Ilsung;Kwark, Jungwon;Park, Sung Ho;Ahn, Seung Do;Jeong, Dong Hyeok;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.317-325
    • /
    • 2012
  • The Varian PORTALVISION (Varian Medical Systems, US) shows significant overresponses as the off-center distance increases compared to the predicted dose. In order to correct the dose discrepancy, the off-axis correction is applied to VARIAN iX linear accelerators. The portal dose for $38{\times}28cm^2$ open field is acquired for 6 MV, 15 MV photon beams and also are predicted by PDIP algorithm under the same condition of the portal dose acquisition. The off-axis correction is applied by modifying the $40{\times}40cm^2$ diagonal beam profile data which is used for the beam profile calibration. The ratios between predicted dose and measured dose is modeled as a function of off-axis distance with the $4^{th}$ polynomial and is applied to the $40{\times}40cm^2$ diagonal beam profile data as the weight to correct measured dose by EPID detector. The discrepancy between measured dose and predicted dose is reduced from $4.17{\pm}2.76$ CU to $0.18{\pm}0.8$ CU for 6 MV photon beam and from $3.23{\pm}2.59$ CU to $0.04{\pm}0.85$ CU for 15 MV photon beam. The passing rate of gamma analysis for the pyramid fluence patten with the 4%, 4 mm criteria is improved from 98.7% to 99.1% for 6 MV photon beam, from 99.8% to 99.9% for 15 MV photon beam. IMRT QA is also performed for randomly selected Head and Neck and Prostate IMRT plans after applying the off-axis correction. The gamma passing rare is improved by 3% on average, for Head and Neck cases: $94.7{\pm}3.2%$ to $98.2{\pm}1.4%$, for Prostate cases: $95.5{\pm}2.6%$, $98.4{\pm}1.8%$. The gamma analysis criteria is 3%, 3 mm with 10% threshold. It is considered that the off-axis correction might be an effective and easily adaptable means for correcting the discrepancy between measured dose and predicted dose for IMRT QA using EPID in clinic.