• Title/Summary/Keyword: Polymerases

Search Result 53, Processing Time 0.022 seconds

Nucleotide Sequence of 7.2 kb Mitochondrial Linear Plasmid DNA in Pleurotus ostreatus (Pleurotus ostreatus 미토콘드리아의 7.2 kb 선상 플라스미드 염기서열 분석)

  • 윤혜숙;구용범;노정혜
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.37-41
    • /
    • 2001
  • Two linear plasmid-like DNAs, 10.2 kb and 7.2 kb were found in the mitochondria of P. ostreatus. They have covalently linked 5'-terminal proteins in both ends. Two continuous fragments of 4.7 kb and 2.3 kb from 7.2 kb DNA were cloned and sequenced. Two long open reading frames (ORF1; 2982 bp, 993 a.a and ORF2; 2703 bp, 900 a.a) and one short open reading frame(ORF3; 771 bp, 256 a.a) were found in the 7.2 kb plasmid. The putative ORF1 and ORF2 have conserved motifs of DNA polymerases and RNA polymerases, respectively, while the ORF3 has homologous regions with phosphatase from Plasmodium, and also with adhesine from Mycoplasma.

  • PDF

Termination of mutant T7 RNA polymerases on intrinsic hairpin-independent termination signal (돌연변이 T7 RNA 증합효소의 머리핀 구조가 만들어지지 않는 인자독립형 전사종결 부위에서의 전사종결에 관한 연구)

  • Shin, Ji-Young;Kim, Dong-Hui;Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • v.14 no.1
    • /
    • pp.25-37
    • /
    • 2004
  • T7 RNA polymerase also recognize intrinsic, hairpin-independent termination signal, a conserved 7-base pair sequence (ATCTGTT in the non-template stand) and U-rich sequence downstream of it. These intrinsic, hairpin-independent termination signal were commonly found in PTH and CJ termination sequences. There are two types of mutant T7 RNA polymerases recognizing sensitively(X3, X19, BG8) of insensitively (R173C) the intrinsic termination signals. We determined the T7 transcription activities of these mutants. Compared to wild-type, mutants X4, 19 and BG8 show highly reduced transcription activities (8%, 33%, 34%). On the other hand mutant R173C shows comparable transcription activity of wild-type (112%). Also transcription termination efficiencies at the PTH or CJ termination signals were determined by using mutant RNA polymerases. Temination of mutnats X4, X19 and BG8 are increased compared to wild-type. On the other hadn mutant R173C proceeds through PTH and CJ termination signals.

  • PDF

Structure-function analysis of PRDI DNA polymerase

  • Jung, Guhung
    • The Microorganisms and Industry
    • /
    • v.16 no.3
    • /
    • pp.6-14
    • /
    • 1990
  • PRDI DNA polymerase is the smallest member of the family B DNA polymerase (Jung et al., 1987). This DNA polyerase is specified by bacteriophage PRDI which infects a wide variety of gram-negative bacteria(Mindich and Bamford, 1988). Because PRDI is highly amenable to genetic and biochemical manipulation, it is a convenient model system with which to study structure-function relationships of DNA polymerase molecules. To determine the functional roles of the highly conserved regions of the family B DNA polymerases, we have initiated site-directed mutagenesis with PRD1 DNA polymerase, and our results show that mutations at the conserved regions within PRD1 DNA polymerase inactivate polymerase complementing activity and catalytic activity.

  • PDF

Mutational analsysis of phage SP6 transcription initiation and a new transcription vector

  • Kang, Changwong;Nam, Sang-Chul;Lee, In-Woo
    • The Microorganisms and Industry
    • /
    • v.14 no.1
    • /
    • pp.7-11
    • /
    • 1988
  • Efficient in vitro RNA synthesis can be easily accomplished from cloned DNA using bactrio-phage SP6, T7 or T3 RNA polymerase. Despite its popularity as in vitro transcription system, molecular mechanisms of bacteriophage transcription has not been studied, although physical and catalytic properties of several phage RNA polymerases have well been documented (1). Only recently the T7 promoter has been physically mapped by footprinting of the T7 RNA polymerase (2,3). These simple phage systems, however, could be useful for detailed molecular studies of transcription.

  • PDF

Understanding the RNA-Specificity of HCV RdRp: Implications for Anti-HCV Drug Discovery

  • Kim, Jin-young;Chong, You-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • Unlike other viral polymerases, HCV RNA-dependent RNA polymerase (RdRp) has not been successfully inhibited by nucleoside analogues presumably due to its strong substrate specificity for RNA. Thus, in order to understand the RNA-specificity of HCV RdRp, the structural characteristics of the active site was investigated. The hereto unknown 2-OH binding pocket at the active site of RdRp provides invaluable implication for the development of novel anti-HCV nucleoside analogues.

Determination of Active Site in PRD1 DNA Polymerase by Site-specific Mutagenesis (Site-specific Mutagenesis에 의한 PRD1 DNA Polymerase의 활성부위 결정)

  • 황정원;정구홍
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.209-214
    • /
    • 1991
  • The PRD1 DNA polymerase is a small multi-functional enzyme containing conserved amino acid sequences shared by family B DNA polymerases. Thus the PRD1 DNA polymerase provides an useful model system with which to study structure-functional relationships of DNA polymerase molecules. In order to investigate the functional and structural roles of the highly conserved amino acid sequences, we have introduced three mutations into a conserved amino acid of the PRD1 DNA polymerase. Genetic complememtation study indicated that each mutation inactivated DNA polymerase catalytic activity.

  • PDF

Cloning, Expression, and Characterization of a Family B-Type DNA Polymerase from the Hyperthermophilic Crenarchaeon Pyrobaculum arsenaticum and Its Application to PCR

  • SHIN HEA-JIN;LEE SUNG-KYOUNG;CHOI JEONG JIN;KOH SUK-HOON;LEE JUNG-HYUN;KIM SANG-JIN;KWON SUK-TAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1359-1367
    • /
    • 2005
  • The gene encoding Pyrobaculum arsenaticum DNA polymerase (Par DNA polymerase) was cloned and sequenced. The gene consists of 2,361 bp coding for a protein with 786 amino acid residues. The deduced amino acid sequence of Par DNA polymerase showed a high similarity to archaeal family B-type DNA polymerases (Group I), and contained all of the motifs conserved in the family B-type DNA polymerases for $3'{\rightarrow}5'$ exonuclease and polymerase activities. The Par DNA polymerase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RP. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $Hirap^{TM}$ Heparin HP column chromatographies. The optimum pH of the purified enzyme was 7.5. The enzyme activity was activated by divalent cations, and was inhibited by EDTA and monovalent cations. The half-life of the enzyme at $95^{\circ}C$ was 6 h. Par DNA polymerase possessed associated $3'{\rightarrow}5'$ proofreading exonuclease activity, which is consistent with its deduced amino acid sequence. PCR experiment with Par DNA polymerase showed an amplified product, indicating that this enzyme might be useful in DNA amplification and PCR-based applications.

Formation of DNA-Protein Crosslink at Oxidized Abasic Site Mediated by Human DNA Polymerase Iota and Mitochondrial DNA Polymerase Gamma

  • Son, Mi-Young;Jun, Hyun-Ik;Goo, Sun-Young;Sung, Jung-Suk
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Human genomic DNA is continuously attacked by oxygen radicals originated from cellular metabolic processes and numerous environmental carcinogens. 2-deoxyribonolactone (dL) is a major type of oxidized abasic (AP) lesion implicated in DNA strand scission, mutagenesis, and formation of covalent DNA-protein crosslink (DPC) with DNA polymerase (Pol) ${\beta}$. We show here that human DNA polymerase (Pol)${\iota}$ and mitochondrial $Pol{\gamma}$ give rise to stable DNA-protein crosslink (DPC) formation that is specifically mediated by dL lesion. $Pol{\gamma}$ mediates DPC formation at the incised dL residue by its 5'-deoxyribose-5-phosphate (dRP) lyase activity, while $Pol{\gamma}$ cross links with dL thorough its intrinsic dRP lyase and AP lyase activities. Reactivity in forming dL-mediated DPC was significantly higher with $Pol{\gamma}$ than with $Pol{\iota}$. DPC formation by $Pol{\gamma}$, however, can be reduced by an accessory factor of $Pol{\gamma}$ holoenzyme that may attenuate deleterious effects of crosslink adducts on mitochondrial DNA. Comparative kinetic analysis of DPC formation showed that the rate of DPC formation with either $Pol{\iota}$ or $Pol{\gamma}$ was lower than that with $Pol{\beta}$. These results revealed that the activity of catalytic lyase in DNA polymerases determine the efficiency of DPC formation with dL damages. Irreversible crosslink formation of such DNA polymerases by dL lesions may result in a prolonged strand scission and a suicide of DNA repair proteins, both of which could pose a threat to the genetic and structural integrity of DNA.

  • PDF

Single-base Discrimination Mediated by Proofreading Inert Allele Specific Primers

  • Lin-Ling, Chen;Zhang, Jia;Sommer, Steve S.;Li, Kai
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.24-27
    • /
    • 2005
  • The role of 3' exonuclease excision in DNA polymerization was evaluated for primer extension using inert allele specific primers with exonuclease-digestible ddNMP at their 3' termini. Efficient primer extension was observed in amplicons where the inert allele specific primers and their corresponding templates were mismatched. However, no primer-extended products were yielded by matched amplicons with inert primers. As a control, polymerase without proofreading activity failed to yield primer extended products from inert primers regardless of whether the primers and templates were matched or mismatched. These data indicated that activation was undertaken for the inert allele specific primers through mismatch proofreading. Complementary to our previously developed SNP-operated on/off switch, in which DNA polymerization only occurs in matched amplicon, this new mutation detection assay mediated by $exo^+$ DNA polymerases has immediate applications in SNP analysis independently or in combination of the two assays.