Formation of DNA-Protein Crosslink at Oxidized Abasic Site Mediated by Human DNA Polymerase Iota and Mitochondrial DNA Polymerase Gamma

  • Published : 2009.03.31

Abstract

Human genomic DNA is continuously attacked by oxygen radicals originated from cellular metabolic processes and numerous environmental carcinogens. 2-deoxyribonolactone (dL) is a major type of oxidized abasic (AP) lesion implicated in DNA strand scission, mutagenesis, and formation of covalent DNA-protein crosslink (DPC) with DNA polymerase (Pol) ${\beta}$. We show here that human DNA polymerase (Pol)${\iota}$ and mitochondrial $Pol{\gamma}$ give rise to stable DNA-protein crosslink (DPC) formation that is specifically mediated by dL lesion. $Pol{\gamma}$ mediates DPC formation at the incised dL residue by its 5'-deoxyribose-5-phosphate (dRP) lyase activity, while $Pol{\gamma}$ cross links with dL thorough its intrinsic dRP lyase and AP lyase activities. Reactivity in forming dL-mediated DPC was significantly higher with $Pol{\gamma}$ than with $Pol{\iota}$. DPC formation by $Pol{\gamma}$, however, can be reduced by an accessory factor of $Pol{\gamma}$ holoenzyme that may attenuate deleterious effects of crosslink adducts on mitochondrial DNA. Comparative kinetic analysis of DPC formation showed that the rate of DPC formation with either $Pol{\iota}$ or $Pol{\gamma}$ was lower than that with $Pol{\beta}$. These results revealed that the activity of catalytic lyase in DNA polymerases determine the efficiency of DPC formation with dL damages. Irreversible crosslink formation of such DNA polymerases by dL lesions may result in a prolonged strand scission and a suicide of DNA repair proteins, both of which could pose a threat to the genetic and structural integrity of DNA.

Keywords

References

  1. Bebenek K, Tissier A, Frank EG, McDonald JP, Prasad R, Wilson SH, Woodgate R, Kunkel TA. 5'-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science 2001. 291: 2156-2159. https://doi.org/10.1126/science.1058386
  2. Berthet N, Roupioz Y, Constant JF, Kotera M, Lhomme J. Translesional synthesis on DNA templates containing the 2'-deoxyribonolactone lesion. Nucleic Acids Res. 2001. 29: 2725-2732. https://doi.org/10.1093/nar/29.13.2725
  3. Chowdhury G, Junnotula V, Daniels JS, Greenberg MM, Gates KS. DNA strand damage product analysis provides evidence that the tumor cell-specific cytotoxin tirapazamine produces hydroxyl radical and acts as a surrogate for O(2). J Am Chem Soc. 2007. 129: 12870-12877. https://doi.org/10.1021/ja074432m
  4. Copeland WC, Longley MJ. DNA polymerase gamma in mitochondrial DNA replication and repair. Scientific World J.2003. 3: 34-44. https://doi.org/10.1100/tsw.2003.09
  5. Costa M. DNA-protein complexes induced by chromate and other carcinogens. Environ Health Perspect. 1991. 92: 45-52. https://doi.org/10.2307/3431136
  6. David SS, O'Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature 2007. 447: 941-950. https://doi.org/10.1038/nature05978
  7. DeMott MS, Beyret E, Wong D, Bales BC, Hwang JT, Greenberg MM, Demple B. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone. J Biol Chem. 2002. 277: 7637-7640. https://doi.org/10.1074/jbc.C100577200
  8. Demple B, DeMott MS. Dynamics and diversions in base excision DNA repair of oxidized abasic lesions. Oncogene 2002. 21: 8926-8934. https://doi.org/10.1038/sj.onc.1206178
  9. Demple B, Sung, JS. Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair (Amst) 2005. 4: 1442-1449. https://doi.org/10.1016/j.dnarep.2005.09.004
  10. Fan J, Wilson DM 3rd. Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radical Biol Med. 2005. 38: 1121-1138. https://doi.org/10.1016/j.freeradbiomed.2005.01.012
  11. Farge G, Pham XH, Holmlund T, Khorostov I, Falkenberg M. The accessory subunit B of DNA polymerase γ is required for mitochondrial replisome function. Nucleic Acids Res. 2007. 35: 902-911. https://doi.org/10.1093/nar/gkl1116
  12. Faure V, Constant JF, Dumy P, Saparbaev M. 2'-deoxyribonolactone lesion produces $G{\rightarrow}A$ transitions in Escherichia coli. Nucleic Acids Res. 2004. 32: 2937-2946. https://doi.org/10.1093/nar/gkh622
  13. Friedberg EC. DNA damage and repair. Nature 2003. 421: 436 -440. https://doi.org/10.1038/nature01408
  14. Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now- J Lab Clin Med. 1992. 119: 598-620.
  15. Kappen LS, Goldberg IH. Neocarzinostatin acts as a sensitive probe of DNA microheterogeneity: switching of chemistry from C-1' to C-4' by a GT mismatch 5' to the site of DNA damage. Proc Natl Acad Sci USA 1992. 89: 6706-6710.
  16. Kow YW, Bao G, Minesinger B, Jinks-Robertson S, Siede W, Jiang YL, Greenberg MM. Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae. Nucleic Acids Res. 2005. 33: 6196-6202. https://doi.org/10.1093/nar/gki926
  17. Kroeger KM, Hashimoto M, Kow YW, Greenberg MM. Crosslinking of 2-deoxyribonolactone and its beta-elimination product by base excision repair enzymes. Biochemistry 2003. 42: 2449-2455. https://doi.org/10.1021/bi027168c
  18. Kroeger KM, Jiang YL, Kow YW, Goodman MF, Greenberg MM. Mutagenic effects of 2-deoxyribonolactone in Escherichia coli. An abasic lesion that disobeys the A-rule. Biochemistry 2004. 43: 6723-6733. https://doi.org/10.1021/bi049813g
  19. Krokan HE, Nilsen H, Skorpen F, Otterlei M, Slupphaug G. Base excision repair of DNA in mammalian cells. FEBS Lett. 2000. 476: 73-77. https://doi.org/10.1016/S0014-5793(00)01674-4
  20. Luch A. Nature and nurture - lessons from chemical carcinogenesis. Nat Rev Cancer 2005. 5: 113-125. https://doi.org/10.1038/nrc1546
  21. Lim SE, Longley MJ, Copeland WC. The mitochondrial P55 accessory subunit of human DNA polymerase γ enhances DNA binging, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem. 1999. 274: 38197-38203. https://doi.org/10.1074/jbc.274.53.38197
  22. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993. 362: 709-715. https://doi.org/10.1038/362709a0
  23. Liu P, Qian L, Sung JS, de Souza-Pinto NC, Zheng L, Bogenhagen DF, Bohr VA, Wilson DM 3rd, Shen B, Demple B. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol. 2008. 28: 4975-4987. https://doi.org/10.1128/MCB.00457-08
  24. Longley MJ, Prasad R, Srivastava DK, Wilson SH, Copeland WC. Identification of 5'-deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. Proc Natl Acad Sci USA 1998. 95: 12244-12248.
  25. Matsumoto Y, Kim K. Excision of deoxyribose phosphate residues by DNA polymerase $\beta$ during DNA repair. Science 1995. 269: 699-702. https://doi.org/10.1126/science.7624801
  26. Miller CA 3rd, Costa M. Immunodetection of DNA-protein crosslinks by slot blotting. Mutat Res. 1990. 234: 97-106. https://doi.org/10.1016/0165-1161(90)90036-N
  27. Mol CD, Izumi T, Mitra S, Tainer JA. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature 2000. 403: 451-456. https://doi.org/10.1038/35000249
  28. Nakano T, Terato H, Asagoshi K, Masaoka A, Mukuta M, Ohyama Y, Suzuki T, Makino K, Ide H. DNA-protein cross-link formation mediated by oxanine. A novel genotoxic mechanism of nitric oxide-induced DNA damage. J Biol Chem. 2003. 278: 25264-25272.
  29. Nakamura J, Swenberg, JA. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 1999. 59: 2522-2526.
  30. Paustenbach DJ, Finley BL, Kasew S. Biological relevance and consequences of chemical- or metal-induced DNA crosslinking. Proc Soc Exp Biol Med. 1996. 211: 211-217.
  31. Pratviel G, Pitie M, Bernadou J, Meunier B. Mechanism of DNA cleavage by cationic manganese porphyrins: hydroxylations at the 1'-carbon and 5'-carbon atoms of deoxyriboses as initial damages. Nucleic Acids Res. 1991. 19: 6283-6288. https://doi.org/10.1093/nar/19.22.6283
  32. Richter W, Jury KM, Loeffler D, Manfras BJ, Eiermann TH, Boehm BO. Immunoglobulin variable gene analysis of human autoantibodies reveals antigen-driven immune response to glutamate decarboxylase in type 1 diabetes mellitus. Eur J Immunol. 1995. 25: 1703-1712. https://doi.org/10.1002/eji.1830250633
  33. Schuessler H, Jung E. Protein-DNA crosslinks induced by primary and secondary radicals. Int J Radiat Biol. 1989. 56: 423-435. https://doi.org/10.1080/09553008914551581
  34. Sigman DS, Mazumder A, Perrin DM. Chemical nucleases. Chem Rev. 1993. 93: 2295-2316. https://doi.org/10.1021/cr00022a011
  35. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev. 1998. 30: 225-243. https://doi.org/10.3109/03602539808996310
  36. Sung JS, DeMott MS, Demple B. Long-patch base excision DNA repair of 2-deoxyribonolactone prevents the formation of DNA-protein cross-links with DNA polymerase $\beta$. J Biol Chem. 2005. 280: 39095-39103. https://doi.org/10.1074/jbc.M506480200
  37. Sung JS, Demple B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J. 2006a. 273: 1620-1629. https://doi.org/10.1111/j.1742-4658.2006.05192.x
  38. Sung JS, Demple B. Analysis of base excision DNA repair of the oxidative lesion 2-deoxyribonolactone and the formation of DNA-protein cross-links. Methods Enzymol. 2006b. 408: 48 -64. https://doi.org/10.1016/S0076-6879(06)08004-9
  39. Sung JS, Mosbaugh DW. Escherichia coli uracil- and ethenocytosine-initiated base excision DNA repair: ratelimiting step and patch size distribution. Biochemistry 2003. 42: 4613-4625. https://doi.org/10.1021/bi027115v
  40. Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S. Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem. 2008. 283: 26349-26356. https://doi.org/10.1074/jbc.M803491200
  41. Xu YJ, DeMott MS, Hwang JT, Greenberg MM, Demple B. Action of human apurinic endonuclease (Ape1) on C1'- oxidized deoxyribose damage in DNA. DNA Repair (Amst) 2003. 2: 175-185. https://doi.org/10.1016/S1568-7864(02)00194-5