• Title/Summary/Keyword: Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE)

Search Result 48, Processing Time 0.026 seconds

The Rapid Detection of Pathogens in Organically Grown Vegetables Using PCR-DGGE (PCR-DGGE를 이용한 유기농 채소의 유해 미생물 신속 검지)

  • Kwon, Oh Yeoun;Son, Seok Min
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.370-375
    • /
    • 2011
  • In this study the polymerase chain reaction (PCR) combined with denaturing gradient gel electrophoresis (DGGE) was evaluated as a method permitting the rapid detection of pathogens in fresh originally grown vegetables. A universal primer (341GCf/534r) was selected for its ability to amplify the V3 region of 16S-rRNA genes in their target pathogens (Salmonella typhimurium, Pseudomonas fluorescens, Bacillus cereus, Listeria monoytogenes, Staphyloocus aureus, E. coli). The 194 bp fragments in PCR were successfully duplicated as expected. The amplified fragments of the same size from six different pathogens also showed good separation upon DGGE. The detection limit of PCR-DGGE for six pathogens in fresh-cut lettuces were over $10^{5}$ CFU/g when sampled by stomaching. However, when the sampling method was changed from stomaching to shaking, the detection limit of six pathogens in organic vegetables was shown to increase by over $10^{1}$ CFU/g, but only those of B. cereus were over $10^{3}$ CFU/g. Therefore, PCR-DGGE was shown to be a reliable method for the detection of pathogens in fresh-cut vegetables.

Effect of Low Salt Concentrations on Microbial Changes During Kimchi Fermentation Monitored by PCR-DGGE and Their Sensory Acceptance

  • Ahmadsah, Lenny S. F.;Min, Sung-Gi;Han, Seon-Kyeong;Hong, Yeun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2049-2057
    • /
    • 2015
  • Various salt concentrations (1.0%, 1.3%, 1.6%, 1.9%, and 2.1% labeled as sample A, B, C, D, and E, respectively) were investigated for microbial diversity, identification of Lactic Acid Bacteria (LAB) in salted kimchi cabbage, prepared under laboratory conditions. These samples were stored at 4°C for 5 weeks in proper aluminum-metalized pouch packaging with calcium hydroxide gas absorber. A culture-independent method known as polymerase chain reaction - denaturing gradient gel electrophoresis was carried out to identify LAB distributions among various salt concentration samples that had identified 2 Weissella (W. confusa and W. soli), 1 Lactobacillus (Lb. sakei), and 3 Leuconostoc (Lc. mesenteroides, Lc. lactis, and Lc. gelidum) in the overall kimchi samples. The pH, titratable acidity, viable cell counts, and coliform counts were not affected by salt variations. In order to assess sensory acceptance, the conducted sensory evaluation using a 9-point hedonic scale had revealed that samples with 1.3% salt concentration (lower than the manufacturer's regular salt concentration) was more preferred, indicating that the use of 1.3% salt concentration was acceptable in normal kimchi fermentation for its quality and safety. Despite similarities in pH, titratable acidity, viable cell counts, coliform counts, and LAB distributions among the various salt concentrations of kimchi samples, the sample with 1.3% salt concentration was shown to be the most preferred, indicating that this salt concentration was suitable in kimchi production in order to reduce salt intake through kimchi consumptions.

Analysis of Plasmid pJP4 Horizontal Transfer and Its Impact on Bacterial Community Structure in Natural Soil

  • KIM TAE SUNG;KIM MI SOON;JUNG MEE KUM;JOE MIN JEONG;AHN JAE HYUNG;OH KYOUNG HEE;LEE MIN HYO;KIM MIN KYUN;KA JONG OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.376-383
    • /
    • 2005
  • Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.

Dynamics of Bacterial Communities of Lamb Meat Packaged in Air and Vacuum Pouch during Chilled Storage

  • Wang, Taojun;Guo, Huiyuan;Zhang, Hao;Ren, Fazheng;Zhang, Ming;Ge, Shaoyang;Luo, Hailing;Zhao, Liang
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • In this study, the changes in microbial communities of lamb meat packaged in the air (plastic tray, PT) and in a vacuum pouch (VAC) were assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) during the storage at $4^{\circ}C$. For the PT lamb, the total viable count (TVC) was $10^7CFU/g$ on Day 5, and the dominated bacteria were Pseudomonas fragi, P. fluorescens, and Acinetobacter spp. For the VAC lamb, the TVC was $10^7CFU/g$ on Day 9, and the dominated bacteria were lactic acid bacteria, including Carnobacterium divergens, C. maltaromaticum, and Lactococcus piscium. One strain of Pseudomonas spp. also appeared in VAC lamb. The relative abundance of Enterobacteriaceae in VAC lamb was higher than that PT lamb, indicating a more important role of Enterobacteriaceae in spoilage for VAC lamb than that of PT lamb. The microbial compositions changed faster in the lamb stored in a PT than that stored in a VAC, and microbial community compositions of the late storage period were largely different from those of the early storage period for both the conditions. The findings of this study may guide improve the lamb hygiene and prolong the shelf life of the lamb.

Molecular methods for diagnosis of microbial pathogens in muga silkworm, Antheraea assamensis Helfer (Lepidoptera: Saturniidae)

  • Gangavarapu Subrahmanyam;Kangayam M. Ponnuvel;Kallare P Arunkumar;Kamidi Rahul;S. Manthira Moorthy;Vankadara Sivaprasad
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • The Indian golden muga silkworm, Antheraea assamensis Helfer is an economically important wild silkworm endemic to Northeastern part of India. In recent years, climate change has posed a threat to muga silk production due to the requirement that larvae be reared outdoors. Since the muga silkworm larvae are exposed to the vagaries of nature, the changing climate has increased the incidence of microbial diseases in the rearing fields. Accurate diagnosis of the disease causing pathogens and its associated epidemiology are prerequisites to manage the diseases in the rearing field. Although conventional microbial culturing methods are widely used to identify pathogenic bacteria, they would not provide meaningful information on a wide variety of silkworm pathogens. The information on use of molecular diagnostic tools in detection of microbial pathogens of wild silk moths is very limited. A wide range of molecular and immunodiagnostic techniques including denaturing gradient gel electrophoresis (DGGE), random amplified polymorphism (RAPD), 16S rRNA/ITSA gene sequencing, multiplex polymerase chain reaction (M-PCR), fluorescence in situ hybridization (FISH), immunofluorescence, and repetitive-element PCR (Rep-PCR), have been used for detecting and characterizing the pathogens of insects with economic significance. Nevertheless, the application of these molecular tools for detecting and typing entomopathogens in surveillance studies of muga silkworm rearing is very limited. Here, we discuss the possible application of these molecular techniques, their advantages and major limitations. These methods show promise in better management of diseases in muga ecosystem.

Analysis of Microbial Community During the Anaerobic Dechlorination of Tetrachloroethylene (PCE) in Stream of Gimpo and Inchon Areas (경기도 김포, 인천 서구지역 소하천의 PCE 탈염소화 군집의 선별 및 다양성 분석)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Cho, Dea-Hyun;Sung, Youl-Boong;Ahn, Chi-Yong;Oh, Hee-Mock;Koh, Sung-Cheol;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2009
  • In this study, anaerobic enrichment cultivation was performed with the sediments from the Gimpo and Inchon areas. Lactate as an electron donor and PCE as an electron acceptor was injected into the serum bottle with an anaerobic medium. After the incubation of 8 weeks, the reductive dechlorination of PCE was observed in 7 sites among 16 sites (43%). Three enrichment cultures showed completely dechlorination of PCE to ethene, while four enrichment culture showed transformation of PCE to cis-DCE. The bacterial community structure was analyzed by PCR-DGGE. Dechlorinating bacteria were detected by species-specific primers. The dominant species in seven anaerobic enrichments were found to belong to the genus of Dehalococcoides sp. and Geobacter sp., and Dehalobacter sp.

Effect of Gynosaponin on Rumen In vitro Methanogenesis under Different Forage-Concentrate Ratios

  • Manatbay, Bakhetgul;Cheng, Yanfen;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1088-1097
    • /
    • 2014
  • The study aimed to investigate the effects of gynosaponin on in vitro methanogenesis under different forage-concentrate ratios (F:C ratios). Experiment was conducted with two kinds of F:C ratios (F:C = 7:3 and F:C = 3:7) and gynosaponin addition (0 mg and 16 mg) in a $2{\times}2$ double factorial design. In the presence of gynosaponin, methane production and acetate concentration were significantly decreased, whereas concentration of propionate tended to be increased resulting in a significant reduction (p<0.05) of acetate:propionate ratio (A:P ratio), in high-forage substrate. Gynosaponin treatment increased (p<0.05) the butyrate concentration in both F:C ratios. Denaturing gradient gel electrophoresis (DGGE) analysis showed there was no apparent shift in the composition of total bacteria, protozoa and methanogens after treated by gynosaponin under both F:C ratios. The real-time polymerase chain reaction (PCR) analysis indicated that variable F:C ratios significantly affected the abundances of Fibrobacter succinogenes, Rumninococcus flavefaciens, total fungi and counts of protozoa (p<0.05), but did not affect the mcrA gene copies of methanogens and abundance of total bacteria. Counts of protozoa and abundance of F.succinogenes were decreased significantly (p<0.05), whereas mcrA gene copies of methanogens were decreased slightly (p<0.10) in high-forage substrate after treated by gynosaponin. However, gynosaponin treatment under high-concentrate level did not affect the methanogenesis, fermentation characteristics and tested microbes. Accordingly, overall results suggested that gynosaponin supplementation reduced the in vitro methanogenesis and improved rumen fermentation under highforage condition by changing the abundances of related rumen microbes.

Diversity and Distribution of Methanogenic Archaea in an Anaerobic Baffled Reactor (ABR) Treating Sugar Refinery Wastewater

  • Li, Jianzheng;Zhang, Liguo;Ban, Qiaoying;Jha, Ajay Kumar;Xu, Yiping
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • The diversity and distribution of methanogenic archaea in a four-compartment anaerobic baffled reactor (ABR) treating sugar refinery wastewater were investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At an organic loading rate of 5.33 kg $COD/m^3{\cdot}day$, the ABR could perform steadily with the mean chemical oxygen demand (COD) removal of 94.8% and the specific $CH_4$ yield of 0.21 l/g $COD_{removed}$. The $CH_4$ content in the biogas was increased along the compartments, whereas the percentage of $H_2$ was decreased, indicating the distribution characteristics of the methanogens occurred longitudinally down the ABR. A high phylogenetic and ecological diversity of methanogens was found in the ABR, and all the detected methanogens were classified into six groups, including Methanomicrobiales, Methanosarcinales, Methanobacteriales, Crenarchaeota, Arc I, and Unidentified. Among the methanogenic population, the acid-tolerant hydrogenotrophic methanogens including Methanoregula and Methanosphaerula dominated the first two compartments. In the last two compartments, the dominant methanogenic population was Methanosaeta, which was the major acetate oxidizer under methanogenic conditions and could promote the formation of granular sludge. The distribution of the hydrogenotrophic (acid-tolerant) and acetotrophic methanogens in sequence along the compartments allowed the ABR to perform more efficiently and steadily.

Influence of Performance and Microbial Community by Internal pH Control on Anaerobic Digestion of Food Waste Leachate (음폐수 이용 혐기성 소화의 내부 pH 조절에 따른 바이오가스 전환율 비교 및 미생물 군집도 분석)

  • Yun, Yeo-Myeong;Cho, Si-Kyung;Jeong, Da-Young;Lee, Eun-Jin;Huh, Kwan-Yong;Shin, Dong-Hyuk;Lee, Chang-Kyu;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.571-578
    • /
    • 2013
  • In this study, the performance and microbial community of anaerobic digestion fed by food waste leachate at low organic loading rate were investigated with and without internal pH control. Experimental results show that similar biogas yield was achieved in both reactors regardless of increase in pH, the concentrations of free ammonia and volatile fatty acids in case of without internal pH controlled one. The results of a methanogenic community analysis by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis revealed that the apparent preponderance of Methanosarcina sp. could be one of reasons for the maintenance of reactor stability.

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.