DOI QR코드

DOI QR Code

Effect of Gynosaponin on Rumen In vitro Methanogenesis under Different Forage-Concentrate Ratios

  • Manatbay, Bakhetgul (Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University) ;
  • Cheng, Yanfen (Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University) ;
  • Mao, Shengyong (Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University) ;
  • Zhu, Weiyun (Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University)
  • Received : 2013.11.12
  • Accepted : 2014.02.02
  • Published : 2014.08.01

Abstract

The study aimed to investigate the effects of gynosaponin on in vitro methanogenesis under different forage-concentrate ratios (F:C ratios). Experiment was conducted with two kinds of F:C ratios (F:C = 7:3 and F:C = 3:7) and gynosaponin addition (0 mg and 16 mg) in a $2{\times}2$ double factorial design. In the presence of gynosaponin, methane production and acetate concentration were significantly decreased, whereas concentration of propionate tended to be increased resulting in a significant reduction (p<0.05) of acetate:propionate ratio (A:P ratio), in high-forage substrate. Gynosaponin treatment increased (p<0.05) the butyrate concentration in both F:C ratios. Denaturing gradient gel electrophoresis (DGGE) analysis showed there was no apparent shift in the composition of total bacteria, protozoa and methanogens after treated by gynosaponin under both F:C ratios. The real-time polymerase chain reaction (PCR) analysis indicated that variable F:C ratios significantly affected the abundances of Fibrobacter succinogenes, Rumninococcus flavefaciens, total fungi and counts of protozoa (p<0.05), but did not affect the mcrA gene copies of methanogens and abundance of total bacteria. Counts of protozoa and abundance of F.succinogenes were decreased significantly (p<0.05), whereas mcrA gene copies of methanogens were decreased slightly (p<0.10) in high-forage substrate after treated by gynosaponin. However, gynosaponin treatment under high-concentrate level did not affect the methanogenesis, fermentation characteristics and tested microbes. Accordingly, overall results suggested that gynosaponin supplementation reduced the in vitro methanogenesis and improved rumen fermentation under highforage condition by changing the abundances of related rumen microbes.

Keywords

References

  1. Aguerre, M. J., M. A. Wattiaux, J. M. Powell, G. A. Broderick, and C. Arndt. 2011. Effect of forage to concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 94:3081-3039. https://doi.org/10.3168/jds.2010-4011
  2. Bauchop, T. and D. O. Mountfort. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42:1103-1110.
  3. Beauchemin, K., M. Kreuzer, F. O'mara, and T. McAllister. 2008. Nutritional management for enteric methane abatement: A review. Anim. Prod. Sci. 48:21-27. https://doi.org/10.1071/EA07199
  4. Benchaar, C., C. Pomar and J. Chiquette. 2001. Evaluation of dietary strategies to reduce methane producion in ruminants: A modelling approach. Can. J. Anim. Sci. 81:563-574. https://doi.org/10.4141/A00-119
  5. Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi, and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522. https://doi.org/10.3168/jds.2008-1441
  6. Blumer, M. and J. L. Liu. 1999. Jiaogulan in China's "Immortalit Herb", Torchlight Pubishing Inc., Badger, USA.
  7. Bodas, R., S. Lopez, M. Fernandez, R. Garcia-Gonzalez, A. B. Rodriguez, R. J. Wallace, and J. S. Gonzalez. 2008. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim Feed Sci Technol. 145:245-258. https://doi.org/10.1016/j.anifeedsci.2007.04.015
  8. Cheng, Y. F., S. Y. Mao, C. X. Pei, J. X. Liu, and W. Y. Zhu. 2006. Detection and diversity analysis of rumen methanogens in the co-cultures with anaerobic fungi. Acta Microbiol. Sin. 46:879-883.
  9. Dehority, B. A. 2005. Ciliate protozoa. In: Methods in Gut Microbial Ecology for Ruminants (Eds. H. P. S. Makkar, and C. S. McSweeney). IAEA, Netherlands. pp. 67-78.
  10. Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  11. Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  12. Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117:157-161. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  13. Goel, G., H. P. S. Makkar, and K. Becker. 2008a. Effect of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek seeds (Trigonella foenum-graecum L.) and their extracts on partitioning of nutrient from roughage and concentrate based feeds to methane. Anim. Feed Sci. Technol. 147:72-89. https://doi.org/10.1016/j.anifeedsci.2007.09.010
  14. Goel, G., H. P. Makkar, and K. Becker. 2008b. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J. Appl. Microbiol. 105:770-777. https://doi.org/10.1111/j.1365-2672.2008.03818.x
  15. Goetsch, A. L. and F. N. Owens. 1985. Effects of sarsaponin on digestion and passage rates in cattle fed medium to low concentrate. J. Dairy Sci. 68:2377-2384. https://doi.org/10.3168/jds.S0022-0302(85)81112-7
  16. Guo, Y. Q., J. X. Liu, Y. Lu, W. Y. Zhu, S. E. Denman, and C. S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 47:421-426. https://doi.org/10.1111/j.1472-765X.2008.02459.x
  17. Hassan, S. M., J. A. Byrd, A. L. Cartwright, and C. A. Bailey. 2010. Hemolytic and antimicrobial activities differ among saponinrich extracts from guar, quillaja, yucca, and soybean. Appl. Biochem. Biotechnol. 162:1008-1017. https://doi.org/10.1007/s12010-009-8838-y
  18. Holtshausen, L., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, N. E. Odongo, P. R. Cheeke, and C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92:2809-2821. https://doi.org/10.3168/jds.2008-1843
  19. Hristov, A. N., T. A. McAllister, F. H. Van Herk, K. J. Cheng, C. J. Newbold, and P. R. Cheeke. 1999. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J Anim. Sci. 77:2554-2563.
  20. Hu, W. L., J. X. Liu, J. A. Ye, Y. M. Wu, and Y. Q. Guo. 2005. Effect of tea saponin on rumen fermentation in vitro. Anim Feed Sci Technol. 120:333-339. https://doi.org/10.1016/j.anifeedsci.2005.02.029
  21. Hussain, I. and P. R. Cheeke. 1995. Effect of dietary Yucca Schidigera extract on rumen and blood profiles of steers fed concentrate-or roughage-based diets. Anim. Feed Sci Technol. 51:231-242. https://doi.org/10.1016/0377-8401(94)00694-5
  22. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim Sci. 73:2483-2492.
  23. Kuwahara, M., F. Kawanishi, T. Komiya, and H. Oshio. 1989. Dammarane saponins of Gynostemma pentaphylum Makino and isolation of malonylginsenosides-Rb1, -Rd, and malonylgypenoside V. Chem. Pharm. Bull. 37:135-139. https://doi.org/10.1248/cpb.37.135
  24. Lila, Z. A., N. Mohammed, S. Kanda, T. Kamada, and H. Itabashi. 2003. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 86:3330-3336. https://doi.org/10.3168/jds.S0022-0302(03)73935-6
  25. Longland, A. C., M. K. Theodorou, R. Sanderson, S. J. Lister, C. J. Powell, and P. Morris. 1995. Non-starch polysaccharide composition and in vitro fermentability of tropical forage legumes varying in phenolic content. Anim. Feed Sci Technol. 55:161-177. https://doi.org/10.1016/0377-8401(95)00808-Z
  26. Lu, C. D. and N. A. Jorgensen. 1987. Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J. Nutr. 117:919-927.
  27. Makkar, H. P., O. P. Sharma, R. K. Dawra, and S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J Dairy Sci. 65:2170-2173. https://doi.org/10.3168/jds.S0022-0302(82)82477-6
  28. Mao, H. L., J. K. Wang, Y. Y. Zhou, and J. X. Liu. 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest. Sci. 129:56-62. https://doi.org/10.1016/j.livsci.2009.12.011
  29. Mao, S. Y., W. Y. Zhu, Q. J. Wang, and W. Yao. 2007a. Effect of daidzein on in vitro fermentation of micro-organisms from the goat rumen. Anim. Feed Sci. Technol. 136:154-163. https://doi.org/10.1016/j.anifeedsci.2006.09.012
  30. Mao, S. Y., G. Zhang, and W. Y. Zhu. 2007b. Effect of disodium fumarate on in vitro rumen fermentation of different substrates and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Asian Australas. J. Anim. Sci. 20:543-549. https://doi.org/10.5713/ajas.2007.543
  31. Miller, T. L. 1995. Ecology of methane production and hydrogen sinks in the rumen. In: Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction (Eds. W. Engelhardt, S. Leonhard-Marek, G. Breves, D. Giesecke, and V. Ferdinand Enke). Stuttgart, Germany. pp. 317-331.
  32. Moss, A. R., J. P. Jouany, and J. Newbold, 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. pp. 49:231-253. https://doi.org/10.1051/animres:2000119
  33. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
  34. Patra, A., D. Kamra, and N. Agarwal. 2006. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 128:276-291. https://doi.org/10.1016/j.anifeedsci.2005.11.001
  35. Patra, A. K., D. N. Kamra, and N. Agarwal. 2010. Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agric. 90:511-520.
  36. Pen, B., C. Sar, B. Mwenya, K. Kuwaki, R. Morikawa, and J. Takahashi. 2006. Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Anim. Feed Sci. Technol. 129:175-186. https://doi.org/10.1016/j.anifeedsci.2006.01.002
  37. Pen, B., C. Sar, B. Mwenya, and J. Takahashi. 2008. Effects of Quillaja saponaria extract alone or in combination with Yucca schidigera extract on ruminal fermentation and methanogenesis in vitro. Anim. Sci J. 79:193-199. https://doi.org/10.1111/j.1740-0929.2008.00517.x
  38. Staerfl, S. M., M. Kreuzer, and C. R. Soliva. 2010. In vitro screening of unconventional feeds and various natural supplements for their ruminal methane mitigation potential when included in a maize-silage based diet. J Anim Feed Sci. 19:651-664.
  39. Sylvester, J. T., S. K. R. Karnati, Z. Yu, C. J. Newbold, and J. L. Firkins. 2005. Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J. Dairy Sci. 88:2083-2095. https://doi.org/10.3168/jds.S0022-0302(05)72885-X
  40. Tanner, M. A., X. Bu, J. A. Steimle, and P. R. Myers. 1999. The direct release of nitric oxide by gypenoside derived from the herb Gynostemma pentaphyllm. Nitric Oxide 3:359-365. https://doi.org/10.1006/niox.1999.0245
  41. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  42. Vincken, J. P., L. Heng, A. de Groot, and H. Gruppen. 2007. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275-297. https://doi.org/10.1016/j.phytochem.2006.10.008
  43. Wallace, R. J., L. Arthaud, and C. J. Newbold. 1994. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl. Environ. Microbiol. 60:1762-1767.
  44. Wang, J. K., J. A. Ye, and J. X. Liu. 2012. Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance-A review. Trop. Anim. Health Prod. 44:697-706. https://doi.org/10.1007/s11250-011-9960-8
  45. Wang, X., S. Mao, J. Liu, L. Zhang, Y. Cheng, W. Jin, and W. Zhu. 2011. Effect of gynosaponins on methane production and microbe numbers in a fungus-methanogen co-culture. J. Anim. Feed Sci. 20:272-284.
  46. Wang, Y., T. A. McAllister, L. J. Yanke, and P. R. Cheeke. 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88:887-896. https://doi.org/10.1046/j.1365-2672.2000.01054.x
  47. Weatherburn, M. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. https://doi.org/10.1021/ac60252a045
  48. Williams, A. G. and G. S. Coleman. 1988. The rumen protozoa. In: The Rumen Microbial Ecosystem (Eds. P. N. Hobson and C. S. Stewart). Springer, New York, USA. pp. 77-129.
  49. Wina, E., S. Muetzel, E. Hoffmann, H. Makkar, and K. Becker. 2005. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol. 121:159-174. https://doi.org/10.1016/j.anifeedsci.2005.02.016
  50. Wu, Z., M. Sadik, F. T. Sleiman, J. M. Simas, M. Pessarakli, and J. T. Huber. 1994. Influence of yucca extract on ruminal metabolism in cows. J. Anim. Sci. 72:1038-1042.
  51. Yang, C. J., S. Y. Mao, L. M. Long, and W. Y. Zhu. 2012. Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios. Animal 6:1788-1794. https://doi.org/10.1017/S1751731112000857
  52. Yan, T., R. Agnew, F. Gordon, and M. Porter. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest Prod. Sci. 64:253-263. https://doi.org/10.1016/S0301-6226(99)00145-1
  53. Yu, Z., R. Garcia-Gonzalez, L. Floyd, Schanbacher, and M. Morrison. 2008. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens denaturing by Archaea-specific PCR and gradient gel electrophoresis. Appl. Environm. Microbiol. 74:889-893 https://doi.org/10.1128/AEM.00684-07
  54. Zhu, W. Y., A. H. Kingston-Smith, D. Troncoso, R. J. Merry, D. R. Davies, G. Pichard, H. Thomas, and M. K. Theodorou. 1999. Evidence of a role for plant proteases in the degradation of herbage proteins in the rumen of grazing cattle. J. Dairy Sci. 82:2651-2658. https://doi.org/10.3168/jds.S0022-0302(99)75522-0
  55. Zhu, W. Y., B. A. Williams, S. R. Konstantinov, S. Tamminga, W. M. de Vos, and A. D. L. Akkermans. 2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe 9:175-180. https://doi.org/10.1016/S1075-9964(03)00083-0

Cited by

  1. fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations vol.119, pp.1, 2015, https://doi.org/10.1111/jam.12819
  2. Effects of Forage:Concentrate Ratio on Growth Performance, Ruminal Fermentation and Blood Metabolites in Housing-feeding Yaks vol.28, pp.12, 2015, https://doi.org/10.5713/ajas.15.0419
  3. rumen fermentation, methane production and true digestibility at different forage to concentrate ratios vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2016.1270823
  4. Effects of concentrate-to-forage ratios and 2-methylbutyrate supplementation on ruminal fermentation, bacteria abundance and urinary excretion of purine derivatives in Chinese Simmental steers vol.102, pp.4, 2018, https://doi.org/10.1111/jpn.12915
  5. Methane Emissions Regulated by Microbial Community Response to the Addition of Monensin and Fumarate in Different Substrates vol.11, pp.14, 2014, https://doi.org/10.3390/app11146282
  6. The effects of phytochemicals on methanogenesis: insights from ruminant digestion and implications for industrial biogas digesters management vol.20, pp.6, 2014, https://doi.org/10.1007/s11101-021-09744-6