• Title/Summary/Keyword: Polymer-grafted surface

Search Result 74, Processing Time 0.037 seconds

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion (이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석)

  • Lee, Jong-Hyeok;Lee, Byung-Gab;Park, Ki-Hun;Bang, Dae-Suk;Jhee, Kwang-Hwan;Sin, Min-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.

The Graft Polymerization of Acrylic Acid in Vapour Phase onto Poly(ethylene terephthalate) by Cold Plasma Part (I) (저온 Plasma를 이용한 Poly(ethylene terephthalate)에의 Acrylic Acid의 기상 Graft 공중합 반응(I))

  • 천태일;최석철;모상영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • The distinguishing characteristic of the glow discharge is that chemical reaction induced by partially ionized gases are limited only to the substrate surface. Most studies have been done on the plasma etching and polymerization. The graft polymerization in vapour phase by cold plasma has been rarely investigated. In this study the system of tub3ar reaction chamber with capacitively coupled electrode of alternative current of 60 Hz was employed for the graft polymerization. The graft polymerization of Acylic Acid(AA) onto the poly (ethylene terephthalate) (PET) was carried out by treatment of PET film and fabric by cold plasma (glow discharge of argon gas), followed by the supply of AA vapour. The graft yield was about 1 wt%. The surface property was determined by contact angle, the surface tension was evaluated by zisman’s plot and equation of surface tension mesurement. The results were as follows: 1. In order to obtain lower contact angle, it was effective to avoid the vicinity of electrodes for a setting position of substrate. 2. Contact angle affected on the monomer pressure and its duration of exposure to the acid vapour. 3. Polymer radical formation was influenced by the changes of the value of current density and plasma treatment time. 4. Total surface tension of plasma grafted PET film increased. With an increase in the carboxylic acid content, the dispersion force decreased, while, the polar force and hydrogen bonding force increased. 5. The contact angle decreased from $75^\circ$ to around $30^\circ$ by plasma grafting. There was no ageing effect on the contact angle after 4 months.

  • PDF

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds (표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동)

  • Choi, Ji-Yeon;Jung, Hyun-Jung;Park, Bang-Ju;Joung, Yoon-Ki;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.

Fabrication of Endothelial Cell-Specific Polyurethane Surfaces co-Immobilized with GRGDS and YIGSR Peptides

  • Choi, Won-Sup;Bae, Jin-Woo;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Mi-Hee;Park, Jong-Chul;Kwon, Il-Keun
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.458-463
    • /
    • 2009
  • Polyurethane (PU) is widely used as a cardiovascular biomaterial due to its good mechanical properties and hemocompatibility, but it is not adhesive to endothelial cells (ECs). Cell adhesive peptides, GRGDS and YIGSR, were found to promote adhesion and spreading of ECs and showed a synergistic effect when both of them were used. In this study, a surface modification was designed to fabricate an EC-active PU surface capable of promoting endothelialization using the peptides and poly(ethylene glycol) (PEG) spacer, The modified PU surfaces were characterized in vitro. The density of the grafted PEG on the PU surface was measured by acid-base back titration to the terminal-free isocyanate groups. The successful immobilization of pep tides was confirmed by amino acid analysis, following hydrolysis, and contact angle measurement. The uniform distribution of peptides on the surface was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). To evaluate the EC adhesive property, cell viability test using human umbilical vein EC (HUVEC) was investigated in vitro and enhanced endothelialization was characterized by the introduction of cell adhesive peptides, GRGDS and YIGSR, and PEG spacer. Therefore, GRGDS and YIGSR co-immobilized PU surfaces can be applied to an EC-specific vascular graft with long-term patency by endothelialization.

CD34 Monoclonal Antibody-Immobilization on Polyurethane Surface by Poly(PEGA-co-BMA) Coating (PEGA/BMA 공중합체의 코팅을 통해 CD34 단일클론항체가 고정화된 폴리우레탄 표면)

  • Joung, Yoon-Ki;Hwang, In-Kyu;Park, Ki-Dong
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.602-607
    • /
    • 2009
  • A polyurethane (PU) surface enabling in vivo endothelialization via endothelial progenitor cell (EPC) capture was prepared for cardiovascular applications. To introduce CD34 monoclonal antibody (mAb) inducing EPC adhesion onto a surface, poly (poly (ethylene glycol) acrylate-co-butyl methacrylate) and poly (PEGA-co-BMA) were synthesized and then coated on a surface of PU, followed by immobilizing CD34 mAb. $^1H$-NMR analysis demonstrated that poly(PEGA-co-BMA) copolymers with a desired composition were synthesized. Poly(PEGA-co-BMA)-coated PU was much more effective for the immobilization of CD34 mAb, comparing with PEG-grafted PU prepared in our previous study, as demonstrated by that surface density and activity of CD34 mAb increased over 32 times. Physico-chemical properties of modified PU surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle, and atomic force microscopy (AFM). The results demonstrated that the poly(PEGA-co-BMA) coating was effective for CD34 mAb immobilization and feasible for applying to cardiovascular biomaterials.

Dispersity and Electro-Conductivity of PU Grafted MWCNT/PU Composite via Simple Blending Method (블렌딩을 이용한 폴리우레탄 그라프트 다중벽 탄소나노튜브/폴리우레탄 복합체의 전기 전도성 및 분산 특성)

  • Yun, Sung-Jin;Im, Hyun-Gu;Kim, Joo-Heon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.500-504
    • /
    • 2010
  • The PU-g-MWNTs/PU film was synthesized by simple blending method to fabricate composites which have excellent mechanical and electrical properties. PU-g-MWNTs based composite revealed much enhanced dispersity than pristine MWNTs composite because of interfacial interaction related with interfacial compatibility between polymer matrix and PU on the MWNTs surface. The electro-conductivity of composite was measured as a function of PU-g-MWNTs concentration. The results were correlated with percolation threshold theory. As a result, the critical concentration and exponent of electro-conductivity behavior was equal to 0.78 wt% and 0.945.

Analysis of the Adsorbed Plasma Proteins in the Moving Actuator type Total Artificial Heart

  • Gyu Ha Ryu;Jon
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.307-314
    • /
    • 1993
  • Plasma protein adsorption is the first event in the blood-material interaction and influenc- es subsequent platelet adhesion towards thlㅈombus formation. Thiㅈomboembolic events are strongly influenced by surface characteristics of materials and fluid dynamics inside the blood pump. In vitro flow visualizaion and an amimal experiment with the moving actuator type TAH were Performed in order to investigate fluid dynamic effects on the protein adsorption. The diffel'encl level, j of shear rate inside the ventricle Lvere determined by consid- ering the direction of the major opening of four healt valves in the implanted TAH and the visualized flow patterns as well. Each ventricle of the explanted TAH was sectionalized into 12 segments according to the shear rate level. The adsorbed protein on each segment was quantified using the ELISA method after soaking in 2% (wye)SDS/PBS for two days. Adsorbed protein layer thicknesses Itvere measured by the Immunogotd method under TEM. The SEM observation show that right ventricle (RV) , immobilized with albumin, displayed different degrees of platelet adhesion on each segment, whereas the left ventricle (LV), grafted by PEO-sulronate, indicated nearly , iame platelet adhesion behavior, regardless of shear rates. The surface concentrations of adsorbed proteins in the low shear rate region are hlghel'than those in the high region, which was confirmed statistically. A modified adsorption model of plasma protein onto polyurethane surface was suggested by considering the effect of the fluid dynamic characteristics.

  • PDF

Microencapsulation of Surface-modified Carbon Black by Miniemulsion Polymerization (미니유화중합법에 의한 표면개질된 카본블랙의 마이크로캡슐화)

  • Jang, Heang Sin;Hong, Jinho;Lee, Jeongwoo;Shim, Sang Eun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.669-675
    • /
    • 2008
  • Carbon black has been widely used in composites, tonor resin, and ink materials. Since carbon black readily agglomerates, it is important to disperse carbon black in real applications. Aiming to improve dispersion stability, carbon black was chemically oxidized to possess hydroxyl groups using a phase transfer catalyst at room temperature. The modified carbon black (CB-OH) was grafted by a silane coupling agent, p-methylacryloxypropyltrimethoxysilane, to carry teminal vinyl groups. The modified carbon black was subsequently used in miniemulsion polymerization to achieve encapsulted core-shell structure. Finally, well-encapsulated carbon black by polymer was obtained in the size range of 100-500 nm. Throughout the polymerization, the effects of surface modification, types of monomers, initiators, and emulsifiers were investigated.

Mechanical and Electrical Properties of PVA Nanocomposite Containing Sonochemically Modified MWCNT in Water (초음파 수상 그래프팅을 이용하여 개질된 MWCNT가 첨가된 PVA 나노복합체의 전기적, 기계적 물성)

  • Kim, Yeongseon;Kim, Minjae;Choi, Jin Kyu;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.136-143
    • /
    • 2015
  • Poly(vinyl alcohol) (PVA) was grafted onto the multiwalled carbon nanotube (MWCNT) using ultrasound in water and modified MWCNT/PVA nanocomposite was prepared. Modified MWCNT had a good affinity with PVA matrix and showed improved dispersion state along with uniform properties. Therefore, the electrical percolation threshold was observed at 0.1 wt% MWCNT. 3.0 wt% modified MWCNT/PVA composite had 50% higher tensile strength, 430% higher elongation at break, and 100% greater modulus. Since the modified MWCNT acted as a nucleation agent, the crystallization temperature increased to $8.5^{\circ}C$ and the crystallinity increased to 11.5% at 5.0 wt% loading concentration.

Preparation of Polypropylene/Clay Nanocomposites Using Aminosilane Treated Clay (아미노실란 개질 클레이를 사용한 폴리프로필렌 클레이 나노복합재료)

  • Hong Chae-Hwan;Bae Jin-Woo;Lee Yong-Bum;Lee Choon-Soo;Jho Jae-Young;Nam Byeong-Uk
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.318-325
    • /
    • 2006
  • Polypropylene-clay nanocomposites were studied by the modification of clay with amino silanes to introduce covalent bonds in nanocomposites, and prepared by melt-compounding with polypropylene, clay modified with amino silanes and maleic anhydride grafted polypropylene. The . .structure and surface properties of modified clay were determined by x-ray diffraction, infrared spectrum, and solid-state $^{29}Si$ nuclear magnetic resonance spectrum. The modification of clay with aminosilanes led to the increase of the silicate interlayers to about $19.8{\AA}$, the weakening effects of hydroxy group at $3650cm^{-1}$ and the signal of amine groups at -69 ppm proved that the modification had taken place.