• Title/Summary/Keyword: Polymer viscosity

Search Result 661, Processing Time 0.027 seconds

Rheological anomalies of the poly(ethylene 2, 6-naphthalate) and poly(ethylene terephthalate) blends depending on the compositions

  • Lee, Hyang-Mok;Suh, Duck-Jong;Kil, Seung-Bum;Park, O-Ok;Yoon, Kwan-Han
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.219-223
    • /
    • 1999
  • The effects of the transreactions on the rheological properties have been found in the poly(ethylene 2, 6-naphthalate) (PEN) and poly (ethylene terephthalate) (PET) blends. The rheological properties were very much dependent on the blend compositions, which, in turn, were related to extent of the reactions. In particular, a blend with 50/50 wt% composition exhibits an unusual and remarkable decrease in complex viscosity and it may be related to the randomness of the copolymer structure through transreactions. It has been identified by investigating the extent of transreactions and block length of the copolymer from the (ethylene 2, 6-naphthalate) (EN) and (ethylene terephthalate) (ET) units from $^1{H}$ n.m.r. spectra.

  • PDF

Structure and Properties of the Organoclay Filled NR/BR Nanocomposites

  • Kim Won-Ho;Kim Sang-Kwon;Kang Jong-Hyub;Choe Young-Sun;Chang Young-Wook
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • Organoclay, was applied as a filler, in place of carbon black and silica, to a natural rubber (NR)/butadiene rubber (BR) blend. A compounding method was used to disperse and separate the layered silicates. The effect of a coupling agent on the vulcanizates was evaluated using both the silica and organoclay filled compounds. After the compounding processes were completed, the XRD diffraction peaks disappeared, but then reappeared after vulcanization. The scorch times for the organoclay-filled compounds were very short compared to those for carbon black and silica-filled compounds. The organoclay-filled compounds showed high values of tensile strength, modulus, tear energy, and elongation at the break. When ranked by viscosity, the compounds appeared in the following order: silica > silica (Si-69) > organoclay > organoclay (Si-69) > carbon black. Fractional hysteresis, tensile set, and wear rates were very consistent with the viscosity of the vulcanizates. The Si 69 coupling agent increased reversion resistance, the maximum torque values in the ODR, modulus, and wear resistance, but decreased elongation at the break, fractional hysteresis, and tension set of the vulcanizates.

The Effect of Oligomer Blending on the Flow Properties of Polycarbonate

  • Cho, Sung-Hwan;Kim, Sun-Mi;Cho, Mi-Suk;Lee, Young-Kwan;Kim, Dong-Min;Kim, Whan-Gi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1021-1024
    • /
    • 2009
  • We successfully prepared high-flow polycarbonate (PC) by blending commercial PC with a low molecular weight PC oligomer. The oligomer was synthesized by the addition of a large quantity of mono functional phenol groups, and the chain end group was reacted with p-tertiary butyl phenol (PTBP) to block the reactivity. The viscosity average molecular weight ($M_v$) for the oligomer was about 4,000-5,000 g/mol, compared to ~19,000 g/mol for the PC blend obtained by blending 10 wt% of the prepared oligomer with the commercial grade PC ($M_v$ of 21,000 g/mol). The blended PC had a melt flow index of 45, which is 2.5 times higher, and a processing temperature that was $20^{\circ}C$ lower, than that of commercial grade PC having a similar $M_v$.

The Shape of Polymers Resulted Condensation in the Mixed Si(OC_2H_5)_4 and Zr(O-nC_3H_7)_4$4 Solutions (Si(OC_2H_5)_4와 Zr(O-nC_3H_7)_4$ 혼합용액의 중합반응에 따른 고분자의 형상)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.220-226
    • /
    • 1994
  • The hydrolysis and condensation reactions in the mixed alkoxide solutions of Si(OC2H5)4 and Zr(O-nC3H7)4 with various water contents (1, 2, 4, and 8 in molar ratio to alkoxide, r) and catalysts were examined by rheological measurements and the number average molecular weight in order to explain the shape of the polymer in the mixed alkoxide solutions. It was found that fibers could be drawn in the viscosity range of 1∼100P from the acid-catalyzed solutions with lower water contents of the mole ratio H2O/alkoxide, r 2. On the other hand, crack free bulk gel was formed from the acid-catalyzed solutions including a large amount of water (r 4), and the base-catalyzed solutions. The relation between the intrinsic viscosity [{{{{ eta }}] and the number average molecular weight n, namely [{{{{ eta }}]=Knα, has shown that the acid-catalyzed spinnable solutions (r=1 and 2) have linear polymers and the exponent α's are about 0.56 and 0.81, whereas non-spinnable solutions (r=4 and 8) have three dimensional network polymers or spherical particles and the exponent α's are 0.41∼0.51 and 0.35.

  • PDF

Novel thermoplastic toughening agents in epoxy matrix for vacuum infusion process manufactured composites

  • Bae, Jin-Seok;Bae, Jihye;Woo, Heeju;Lee, Bumjae;Jeong, Euigyung
    • Carbon letters
    • /
    • v.25
    • /
    • pp.43-49
    • /
    • 2018
  • This study suggests the novel thermoplastic toughening agent, which can be applied in the monomer forms without increasing the viscosity of the epoxy resin and polymerized during the resin curing. The diazide (p-BAB) and dialkyne (SPB) compounds are synthesized and mixed with the epoxy resin and the carbon fiber reinforced epoxy composites are prepared using vacuum infusion process (VIP). Then, flexural and drop weight tests are performed to evaluate the improvement in the toughness of the prepared composites to investigate the potential of the novel toughening agent. When 10 phr of p-BAB and SPB is added, the flexural properties are improved, maintaining the modulus as well as the toughness is improved. Even with a small amount of polytriazolesulfone polymerized, due to the filtering effect of the solid SPB by the layered carbon fabrics during the VIP, the toughening and strengthening effect were observed from the novel toughening agent, which could be added in monomer forms, p-BAB and SPB. This suggests that the novel toughening agent has a potential to be used for the composites prepared from viscosity sensitive process, such as resin transfer molding and VIP.

Synthesis and Performance Evaluation of Linear Polycarboxylate Dispersant of Glacial Acrylic Acid - Maleic Acid- Sodium Methallyl Disulfonate for Ceramics

  • Kommanapalli, Kiran Kumar;Lyot, Pierre;Sunkara, Jhansi Rani;Checule, Pierrick
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.126-134
    • /
    • 2018
  • Using aqueous solution free radical polymerization with glacial acrylic acid (GAA), maleic anhydride (MA) and sodium methallyl disulfonate (SMADS), a novel linear polycarboxylate dispersant was synthesized for ceramics. Dispersant linear structural characterization was done by FTIR, $^1H$ NMR, HPLC and GPC, and the ratio of monomers was determined using an orthogonal experiment. This research is focused on the effects of polymerization temperature, monomer mole ratios and dosage of initiator on ceramic slurry viscosity with linear polycarboxylate dispersant for ceramic dosage rate of 0.30% (based on dry slurry), all of which were investigated by single factor test. The best polymerization conditions for linear GAA-MA-SMADS are when n(AA) : n(MA) : n(SMADS) equals 3.0 : 1.0 : 0.5, the molecular weight of the polymer is 4600 daltons, the initiator sodium persulfate accounts for 7% of the total mass of polymerized monomers, the polymerization temperature is $90^{\circ}C$ and the reaction time is 2 h. The ceramic body slurry viscosity drops from $820mPa{\cdot}s$ to $46mPa{\cdot}s$ when the concentration of the polycarboxylate dispersant is 0.30%.

Electrochemical Characterization of Lithium Polyelectrolyte Based on Ionic Liquid

  • Cha, E.-H.;Lim, S.-A.;Kim, D.-W.;Choi, N.-S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.271-275
    • /
    • 2009
  • Five novel lithium polyelectrolyte-ionic liquid systems, using poly (lithium 2-acrylamido-2-methyl propanesulfonate; PAMPSLi) were prepared and their electrochemical properties were measured. The ionic conductivity of the PAMPSLi/1-ethyl-3-methylimidazolium tricyano methanide (emImTCM) system was exhibited high conductivity (1.28 $\times$ $10^{-3}$ $S/cm^{-1}$). The high conductivity and low viscosity of PAMPSLi/emImTCM system is due to the high flexibility of imidazolium cation and dissociation of lithium cation from the polymer chains. The PAMPSLi/N,N-dimethyl-N-propyl-Nbutylammonium tricyanomethanide ($N_{1134}TCM$) and PAMPSLi/N, N-dimethyl-N-propyl-N-butylammonium dicyanamide ($N_{1134}DCA$) systems showed fairly high conductivity (6.3 $\times$ $10^{-4}$ $S/cm^{-1}$, 6.0 $\times$ 10.4 S/cm.1). PAMPSLi/Trihexyl (tetradecyl) phosphonium bis (trifluoromethane sulfonyl) amide ($P_{66614}TFSA$) exhibited low conductivity (2.22 $\times$ $10^{-5}$ $Scm^{-1}$) and thermally stable over 400$^{\circ}C$.

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

Surface Properties of Silane-Treated Titania Nanoparticles and Their Rheological Behavior in Silicone Oil

  • Hwang, Joon-Sik;Lee, Jeong-Woo;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.409-417
    • /
    • 2005
  • The surface of rutile titania nanoparticles was chemically modified by reacting with alkoxy silane. The surface and rheological properties in silicone oil having a wide range of viscosity were investigated. Total surface free energy($\gamma_S$) of the titania particles decreased from 53.12 to 26.94 mJ/$m^2$ as the silane used for surface treatment was increased from 0 to 5.0 wt$\%$. The surface free energy of neat silane was 25.5 mJ/$m^2$, which is quite close to that oftitania particles treated with 5.0 wt$\%$ silane. Due to the hydrophobic nature oftreated-titania, the contact angle was accordingly higher for polar solvent in the order of water>ethylene glycol> formamide>$\alpha$-bromonaphthalene. In sum of rheological behavior, as the applied shear stress or viscosity of the silicone oil increased, the titania particles tend to form layers and agglomerated clusters, showing shear-thinning and shear-thickening behaviors, sequentially. A good dispersion of discrete titania particles obeying a Newtonian flow behavior was achieved at a surface energy or low concentration of silane-treated titania particles in hydrophobic silicone oil.

Effect of PPG, MDI, 2-HEMA and butyl acrylate content on the properties of polyurethane adhesive (폴리우레탄 접착제의 물성에 미치는 PPG, MDI, 2-HEMA 및 butyl acrylate량의 영향)

  • Park, Chan Young
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.245-252
    • /
    • 2014
  • FT-IR measurement and the physical properties of polyurethane adhesive prepared from the polyol, isocyanate, 2-HEMA and other acrylate monomers were examined. The softening point, viscosity, adhesion strength and mechanical properties of the PU adhesives were reviewed by Ring and Ball method, Brookfield viscometer and universal test machine, respectively. Results revealed that increment of both PPG amount and butyl acrylate content decreased softening point, adhesion strength, tensile strength and 100% modulus. However as 2-HEMA and MDI content increased the mechanical properties including tensile strength, 100% modulus increased, and also the viscosity and NCO content increased.