Surface Properties of Silane-Treated Titania Nanoparticles and Their Rheological Behavior in Silicone Oil

  • Hwang, Joon-Sik (Department of Chemical Engineering, Institute of Clear Technology, Inha University) ;
  • Lee, Jeong-Woo (Department of Chemical Engineering, Institute of Clear Technology, Inha University) ;
  • Chang, Yoon-Ho (Department of Chemical Engineering, Institute of Clear Technology, Inha University)
  • Published : 2005.10.01

Abstract

The surface of rutile titania nanoparticles was chemically modified by reacting with alkoxy silane. The surface and rheological properties in silicone oil having a wide range of viscosity were investigated. Total surface free energy($\gamma_S$) of the titania particles decreased from 53.12 to 26.94 mJ/$m^2$ as the silane used for surface treatment was increased from 0 to 5.0 wt$\%$. The surface free energy of neat silane was 25.5 mJ/$m^2$, which is quite close to that oftitania particles treated with 5.0 wt$\%$ silane. Due to the hydrophobic nature oftreated-titania, the contact angle was accordingly higher for polar solvent in the order of water>ethylene glycol> formamide>$\alpha$-bromonaphthalene. In sum of rheological behavior, as the applied shear stress or viscosity of the silicone oil increased, the titania particles tend to form layers and agglomerated clusters, showing shear-thinning and shear-thickening behaviors, sequentially. A good dispersion of discrete titania particles obeying a Newtonian flow behavior was achieved at a surface energy or low concentration of silane-treated titania particles in hydrophobic silicone oil.

Keywords

References

  1. G. E. Morris, W. A. Skinner, P. G. Self, and R. St. C. Smart, Colloids Surf. A, 155, 27 (1999) https://doi.org/10.1016/S0927-7757(98)00631-1
  2. W. J. Tseng and K.-C. Lin, Mat. Sci. Eng., A355, 186 (2003)
  3. H.-G. Yang, C.-Z. Li, H.-C. Gu, and T.-N. Fang, J. Colloid Interf. Sci., 236, 96 (2001) https://doi.org/10.1006/jcis.2000.7373
  4. A. Lengalova, V. Pavlinek, P. Saha, O. Quadrat, and J. Stejskal, Colloids Surf. A, 227, 1 (2003) https://doi.org/10.1016/S0927-7757(03)00348-0
  5. S. Farrokhpay, G. E. Morris, D. Fornasiero, and S. P. Daniel, Colloids Surf. A, 253, 183 (2005) https://doi.org/10.1016/j.colsurfa.2004.11.019
  6. U. Gesenhues, Chem. Eng. Tech., 26, 25 (2003) https://doi.org/10.1002/ceat.200390003
  7. J. Leimbach and H. Rupprecht, Colloid Polym. Sci., 271, 307 (1993) https://doi.org/10.1007/BF00652371
  8. J. Wang, L. Gao, J. Sun, and Q. Li, J. Colloid Interf. Sci., 213, 552 (1999) https://doi.org/10.1006/jcis.1999.6138
  9. H. Strauss, H. Heegn, and I. Strienitz, Chem. Eng. Sci., 48, 323 (1993) https://doi.org/10.1016/0009-2509(93)80020-Q
  10. J.-G. Li, L. Gao, and J.-K. Guo, J. Mater. Sci. Sci. Lett., 21, 509 (2002)
  11. G. Girod, J. M. Lamarche, and A. Foissy, J. Colloid Interf. Sci., 121, 265 (1988) https://doi.org/10.1016/0021-9797(88)90430-4
  12. M. R. Bohmer, Y. Attar Sofi, and A. Foissy, J. Colloid Interf. Sci., 164, 126 (1994) https://doi.org/10.1006/jcis.1994.1151
  13. H. W. Kilau and J. E. Pahlman, Colloids Surf. A, 26, 217 (1987). https://doi.org/10.1016/0166-6622(87)80118-X
  14. R. Varadara, J. Bock, N. Brons, and S. Zushma, J. Colloid Interf. Sci., 167, 207 (1994) https://doi.org/10.1006/jcis.1994.1350
  15. C. J. van Oss, M. K. Chaudhury, and R. J. Good, Adv. Colloid Interf. Sci., 28, 35 (1987) https://doi.org/10.1016/0001-8686(87)80008-8
  16. C. J. van Oss, M. K. Chaudhury, and R. J. Good, Chem. Rev., 88, 927 (1998) https://doi.org/10.1021/cr00088a006
  17. C. J. van Oss, Colloid Surf. A, 78, 1 (1993) https://doi.org/10.1016/0927-7757(93)80308-2
  18. C. J. van Oss, Colloid Surf. B, 5, 91 (1995) https://doi.org/10.1016/0927-7765(95)01217-7
  19. R. S. Drago, G. C. Vogel, and T. E. Needham, J. Am. Chem. Soc., 99, 3203 (1977) https://doi.org/10.1021/ja00452a001
  20. E. Chibowski and P. C. Rafel, J. Colloid Interf. Sci., 240, 473 (2001) https://doi.org/10.1006/jcis.2001.7616
  21. R. J. Stokes and D. F. Evans, Fundamentals of Interfacial Engineering, Wiley, New York, 1996
  22. W. J. Frith and A. Lips, Adv. Colloid Interf. Sci., 98, 341 (2002) https://doi.org/10.1016/S0001-8686(02)00004-0
  23. R. J. Hoffman, J. Rheology, 42, 111 (1998)
  24. M. D. Chadwick, J. W. Goodwin, B. Vincent, E. J. Lawson, and P. D. A. Mills, Colloid Surf. A, 196, 235 (2002) https://doi.org/10.1016/S0927-7757(01)00898-6
  25. H. Jung, K. Lee, S. E. Shim, S. Yang, J. M. Lee, and S. Choe, Macromol. Res., 12, 512 (2004) https://doi.org/10.1007/BF03218436
  26. I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3, 137 (1959) https://doi.org/10.1122/1.548848
  27. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, New York, 1989