• Title/Summary/Keyword: Polymer scaffold

Search Result 134, Processing Time 0.027 seconds

Evaluation of polyglycolic acid as an animal-free biomaterial for three-dimensional culture of human endometrial cells

  • Sadegh Amiri;Zohreh Bagher;Azadeh Akbari Sene;Reza Aflatoonian;Mehdi Mehdizadeh;Peiman Broki Milan;Leila Ghazizadeh;Mahnaz Ashrafi;FatemehSadat Amjadi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.259-269
    • /
    • 2022
  • Objective: Animal-free scaffolds have emerged as a potential foundation for consistent, chemically defined, and low-cost materials. Because of its good potential for high biocompatibility with reproductive tissues and well-characterized scaffold design, we investigated whether polyglycolic acid (PGA) could be used as an animal-free scaffold instead of natural fibrin-agarose, which has been used successfully for three-dimensional human endometrial cell culture. Methods: Isolated primary endometrial cells was cultured on fibrin-agarose and PGA polymers and evaluated various design parameters, such as scaffold porosity and mean fiber diameter. Cytotoxicity, scanning electron microscopy (SEM), and immunostaining experiments were conducted to examine cell activity on fabricated scaffolds. Results: The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and SEM results showed that endometrial cells grew and proliferated on both scaffolds. Immunostaining showed cytokeratin and vimentin expression in seeded cells after 7 days of culture. On both scaffolds, an epithelial arrangement of cultured cells was found on the top layer and stromal arrangement matrix on the bottom layer of the scaffolds. Therefore, fibrin-agarose and PGA scaffolds successfully mimicked the human endometrium in a way suitable for in vitro analysis. Conclusion: Both fibrin-agarose and PGA scaffolds could be used to simulate endometrial structures. However, because of environmental and ethical concerns and the low cost of synthetic polymers, we recommend using PGA as a synthetic polymer for scaffolding in research instead of natural biomaterials.

New Method of Injectable Hydrogels by Novel Photo-polymerization

  • Lee, Seung-Young;Tae, Gi-Yoong
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.252-252
    • /
    • 2006
  • Utilizing the existence of the induction period in photo-polymerization, we propose a new injection method of photo-polymerizable, thermocrosslinking hydrogels made of di-acrylated Pluronic F127 (DA-PF127). This method can solve the problem of fast dissolution of thermal gelation as a scaffold and the disadvantages of the existing injection method that photo-polymerize di-acrylated Pluronic polymer after injection using optical fiber. Injectable gelation of DA-PF127 by the proposed method was demonstrated both in vitro and in vivo. The enhanced stability by this novel photo-polymerization strategy was confirmed by the more sustained release of loaded protein as well as the prolonged degradation time of the hydrogels.

  • PDF

Effect of polymer concentration in cryogelation of gelatin and poly (vinyl alcohol) scaffolds

  • Ceylan, Seda;Demir, Didem;Gul, Gulsah;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The aim of this study was to investigate the effect of total polymer concentration on the chemical structure, morphology of pores, porosity, swelling ratio, degradation of gelatin-poly (vinyl alcohol) (Gel-PVA) cryogel scaffolds. Porous cryogels were prepared with cryogelation technique by using glutaraldehyde as a crosslinker. Functional group composition of cryogels after crosslinking was investigated by Fourier Transform Infrared (FTIR). The morphology of cryogels was characterized via scanning electron microscopy (SEM) and porosity analysis. All of the cryogels had a porous structure with an average pore size between $45.58{\pm}14.28$ and $50.14{\pm}4.26{\mu}m$. The cryogels were biodegradable and started to degrade in 14 days. As the polymer concentration increased the swelling ratio, the porosity and the degradation rate decreased. Spongy and mechanically stable Gel-PVA cryogels, with tunable properties, can be potential candidates as scaffolds for tissue engineering applications.

3-D Rat Hepatocytes' Culture on Polystyrene Nanofibrous Scaffold (폴리스티렌 나노섬유상에서의 간세포의 3차원 배양)

  • Kim, Young-Jin;Ahn, Chang-Hyun;Oh, Hwan-Hee;Kim, Young-Jin;Yoon, Kwan-Han;Kang, Inn-Kyu;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2008
  • We have fabricated polystyrene (PS) nanofibrous scaffold for hepatocyte culture by electrospinning method and subsequently coated with specific ligand of Poly[N-p-vinylbenzyl-O-$\beta$-D-galactopyranocyl-($1{\rightarrow}4$)-D-gluconamide](PVLA) to enhance hepatocytes attachment. Rat hepatocytes behavior on the PVLA-coated and non-coated PS nanofibrous matrices have been investigated. Electrospun PS nanofiber structures revealed randomly aligned fibers with average diameter of 500 nm. It is observed that PS nanofibrous matrix could incorporate many cells into the interior of the matrix probably due to the suitable pore size. Cell viabilities cultured on PVLA-coated PS nanofibrous mats were maintained for 3 weeks, while it was decreased rapidly on PVLA-coated PS dishes. High hepatic functions especially for albumin secretion and ammonia removal were maintained at least for 2 weeks on nanofibrous mats but rapidly decreased on flat PS dishes. These results indicate that nanofibrous structure enabled 3-D culture with high level of cell-cell contact results in providing cell-cell communications and subsequent long-term maintenance of specific cell functions.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Preparation and Characterization of Ipriflavone-Loaded Poly(L-lactide-co-glycolide) Scaffold for Tissue Engineered Bone (조직공학적 골을 위한 애프리플라본을 함유한 다공성 지지체의 제조 및 그 특성)

  • Jang, Ji-Wook;Lee, Bong;Han, Chang-Whan;Lee, Il-Woo;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.226-234
    • /
    • 2003
  • Ipriflavone (IP), a non-hormonal isoflavone derivative, has been shown to interfere with bone remodeling by inhibiting bone resorption and stimulating bone formation. IP consistently increased the amount of Ca incorporated into the cell layer by mesenchymal stem cells (MSCs). In this study, we developed the novel IP loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. IP/PLGA scaffo1ds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy, determination of residual salt amount, differential scanning calorimetry, and X-ray diffractometer, respectively. IP/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of IP on the osteoinduction compared with control PLGA scaffo1ds. Thin sections were cut from paraffin embedded tissues and histological sections were stained H&E, von Kossa, and immunohistochemical staining for Type I collagen and osteocalcin. It can be observed that the porosity was above 91.7% and the pore size was above 101 $\mu\textrm{m}$. Control scaffo1d and IP/PLGA scaffo1ds of 50% IP were implanted on the back of athymic nude mouse to observe the effect of IP on the induction of cells proliferation for 9 weeks. The evidence of calcification, osteoblast, and osteoid from the undifferentiated stem cells in the subcutaneous sites and other soft connective tissue sites having a preponderance of stem cells has been observed. From these results, it seems that IP plays an important role for bone induction in IP/PLCA scaffolds.

Preparation and Characterization of Demineralized Bone Particle-loaded PLGA Scaffold for Tissue Engineered Bone (조직공학적 골재생을 위한 탈미넬화된 골분을 함유한 다공성 지지체의 제조 및 그 특성)

  • Jang Ji Wook;Lee Bong;Han Chang Whan;Kim Mun Suk;Cho Sun Hang;Lee Hai Bang;Khang Gilson
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.382-390
    • /
    • 2004
  • One of the significant natural bioactive materials is demineralized bone particle (DBP) whose has a powerful induce. of new bone growth. In this study, we developed the DBP loaded poly-lactide (PLA) and poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. PLA/DBP and PLGA/DBP scaffolds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy. BMSCs were stimulated by osteogenic medium and characterized by histological stained Wright-Giemsa, Alizarin red, von Kossa, and alkaline phosphate activity (ALP). DBP impregnated scaffolds with BMSCs were implanted into the back of athymic nude mouse to observe the effect of DBP on the osteoinduction compared with control scaffolds. It can be observed that the porosity was above $90.2\%$ and the pore size was above 69.1$\mu$m. BMSCs could be differentiated into osteoprogenitor cells as result of wright-giemsa, alizarin red, von Kossa and ALP staining. In in vivo study, we could observed calcification region in PLA/DBP and PLGA/DBP groups, but calcification did not occur almost in control scaffolds. From these results, it seems that DBP as well as BMSCs play an important role for bone induction in PLA/DBP and PLGA/DBP scaffolds.

Systematic Study of Fluorescein-Functionalized Macrophotoinitiators for Colorimetric Bioassays

  • Lee, Jeong-Gyu;Han, Gyeong-Yeop;Go, Sang-Won;Sikes, Hadley D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.263.2-263.2
    • /
    • 2013
  • We report a systematic investigation of a set of macrophotoinitiators for use in polymerization-based signal amplification. To test the dependence of photopolymerization responses on the number of photoinitiators localized per molecular recognition event, we gradually increased the number of photoinitiator molecules coupled to a scaffold macromolecule. Macrophotoinitiators constructed with an average of 7 to 168 photoinitiators per polymer with the goals of quantifying the relationship between the number of initiators per binding event and the degree of amplified colorimetric readout. To evaluate the capacity of the macrophotoinitiators to detect molecular recognition, neutravidin was coupled to these molecules to recognize biotin-labeled DNA immobilized on biochip test surfaces. Fluorescein macroinitiators are found to be useful in detecting molecular recognition above a threshold of initiators per polymer. Above this threshold, increasing the number of initiators per macroinitiator resulted in increased signal strength.

  • PDF

Artificial Dermis Composed of Gelatin, Hyaluronic Acid and (1\longrightarrow3),(1\longrightarrow6)-$\beta$-Glucan

  • Lee, Sang-Bong;Jeon, Hyun-Wook;Lee, Young-Woo;Cho, Seong-Kwan;Lee, Young-Woo;Song, Kang-Won;Park, Moon-Hyang;Hong, Sung-Hwa
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.368-374
    • /
    • 2003
  • Porous scaffolds composed of gelatin and polysaccharides such as hyaluronic acid and $\beta$-glucan were prepared by using the freeze-drying method after cross-linking with l-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). The scaffold had an inter-connected pore structure with the sufficient pore size for use as a support for the growth of fibroblasts. Results for the contact angle and cell attachment confirmed that high gelatin content in a mixture was suitable for cellular attachment and distribution in two- or three-dimensional fibroblast cultures. However, the addition of polysaccharides aroused the synergistic effects of morphologic and mechanical property of gelatin-based scaffolds. To prepare the artificial dermis for the wound dressing to mimic the normal human dermal skin, fibroblasts were isolated from a child's foreskin, and cultured in gelatin-based scaffolds. An in vivo study showed that the artificial dermis containing the fibroblasts enhanced the wound healing rate and re-epithelialization of a full-thickness skin defect rather than the acellular scaffold after one week.