Artificial Dermis Composed of Gelatin, Hyaluronic Acid and (1\longrightarrow3),(1\longrightarrow6)-$\beta$-Glucan

  • Lee, Sang-Bong (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Jeon, Hyun-Wook (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee, Young-Woo (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Cho, Seong-Kwan (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee, Young-Woo (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Song, Kang-Won (Department of Pathology, College of Medicine, Hanyang University) ;
  • Park, Moon-Hyang (Department of Pathology, College of Medicine, Hanyang University) ;
  • Hong, Sung-Hwa (Korea FDA Biologics Evaluation Department, Blood Products Division)
  • Published : 2003.10.01

Abstract

Porous scaffolds composed of gelatin and polysaccharides such as hyaluronic acid and $\beta$-glucan were prepared by using the freeze-drying method after cross-linking with l-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). The scaffold had an inter-connected pore structure with the sufficient pore size for use as a support for the growth of fibroblasts. Results for the contact angle and cell attachment confirmed that high gelatin content in a mixture was suitable for cellular attachment and distribution in two- or three-dimensional fibroblast cultures. However, the addition of polysaccharides aroused the synergistic effects of morphologic and mechanical property of gelatin-based scaffolds. To prepare the artificial dermis for the wound dressing to mimic the normal human dermal skin, fibroblasts were isolated from a child's foreskin, and cultured in gelatin-based scaffolds. An in vivo study showed that the artificial dermis containing the fibroblasts enhanced the wound healing rate and re-epithelialization of a full-thickness skin defect rather than the acellular scaffold after one week.

Keywords

References

  1. Biomaterials v.24 J.S.Mao;L.G.Zhao;Y.J.Yiu;K.D.Yao https://doi.org/10.1016/S0142-9612(02)00442-8
  2. Macromol. Res. v.10 no.3 G.Khang;J.M.Rhee;P.Shin;I.Y.Kim;B.Lee;S.J.Lee;Y.M.Lee;H.B.Lee;I.Lee https://doi.org/10.1007/BF03218266
  3. Macromol. Res. v.10 no.3 S.J.Lee;Y.M.Lee;G.Khang;I.Y.Kim;B.Lee;H.B.Lee https://doi.org/10.1007/BF03218265
  4. Biomaterials v.20 Y.S.Choi;S.R.Hong;Y.M.Lee;K.W.Song;M.H.Park;Y.S.Nam https://doi.org/10.1016/S0142-9612(98)00180-X
  5. J. Biomed. Mater. Res. v.48 Y.S.Choi;S.R.Hong;Y.M.Lee;K.W.Song;M.H.Park;Y.S.Nam https://doi.org/10.1002/(SICI)1097-4636(1999)48:5<631::AID-JBM6>3.0.CO;2-Y
  6. J. Mater. Sci.-Mater. M. v.11 Y.S.Choi;S.B.Lee;S.R.Hong;Y.M.Lee;K.W.song;M.H.Park;Y.S.Nam
  7. Biomaterials v.22 S.R.Hong;S.J.Lee;J.W.Shim;Y.S.Choi;Y.M.Lee;K.W.Song;M.H.Park;Y.S.Nam;S.I.Lee https://doi.org/10.1016/S0142-9612(01)00021-7
  8. Dev. Biol. v.38 S.Meier;E.D.Hay https://doi.org/10.1016/0012-1606(74)90005-0
  9. Exp. Cell. Res. v.84 G.O.Gey;M.Svoelis;M.Foard;F.B.Bang https://doi.org/10.1016/0014-4827(74)90380-2
  10. Proc. Natl. Acad. Sci. USA v.75 A.E.Postlethwaite;J.M.Seyer;A.H.Kang https://doi.org/10.1073/pnas.75.2.871
  11. J. Biomed. Mater. Res. v.23 J.K.Law;J.R.Parsons;F.H.Silver;A.B.Weiss https://doi.org/10.1002/jbm.820230902
  12. Biomaterials v.14 L.Benedetti;R.Cortivo;A.Berti;F.Pea https://doi.org/10.1016/0142-9612(93)90160-4
  13. J. Biomed. Mater. Res. v.27 N.E.Larsen;C.T.Pollak;K.Reiner;E.Leshchiner;E.A.Balazs https://doi.org/10.1002/jbm.820270903
  14. J. Chromatogr. A v.986 G.Karlsson;R.Bergman https://doi.org/10.1016/S0021-9673(02)01955-6
  15. International Congress Series v.1223 T.Sawai;M.Uzuki https://doi.org/10.1016/S0531-5131(01)00454-X
  16. J. Cataract Refr. Surg. v.27 G.Marchini;M.Marraffa;C.Brunelli;R.Morbio;L.Bonomi https://doi.org/10.1016/S0886-3350(00)00857-9
  17. Carbohyd. Polym. v.28 J.A.Bohn;J.N.Bemiller https://doi.org/10.1016/0144-8617(95)00076-3
  18. Artif. Organs v.24 K.Yang;Y.K.Seo;H.H.Youn;D.H.Lee;S.N.Park;J.K.Park https://doi.org/10.1046/j.1525-1594.2000.06334.x
  19. Culture of Animal Cells, A Manual of Basic Technique (4th ed.) R.L.Freshney
  20. Tissue. Eng. v.5 M.L.Martine;Lafrance;D.W.Armstrong https://doi.org/10.1089/ten.1999.5.153
  21. Polymer (Korea) v.24 K.S.Khang;S.J.Lee;J.H.Jeon;J.H.Lee;H.B.Lee
  22. J. Colloid Interf. Sci. v.155 Y.Tamada;Y.Ikada https://doi.org/10.1006/jcis.1993.1044
  23. Biochimica et Biophysica Acta (BBA) - Biomembranes v.1564 N.DAN https://doi.org/10.1016/S0005-2736(02)00468-6
  24. Biomaterials v.22 R.A.Quirk;W.C.Chen;M.C.Davies;S.J.B.Tendler;K.M.Shakesheff https://doi.org/10.1016/S0142-9612(00)00250-7
  25. J. Artif. Organs. v.2 Y.Kuroyanagi https://doi.org/10.1007/BF02480051
  26. J. Biomed. Mater. Res. v.49 B.Chevallay;N.A.Malak;D.Herbage https://doi.org/10.1002/(SICI)1097-4636(20000315)49:4<448::AID-JBM3>3.0.CO;2-L
  27. J. Biomed. Mater. Res. v.35 M.D.Harriger;A.P.Supp;G.D.Warden;S.T.Boyce https://doi.org/10.1002/(SICI)1097-4636(199705)35:2<137::AID-JBM1>3.0.CO;2-O
  28. J. Biomat. Sci.-Polym. E. v.10 M.Tanaka;N.Nakakita;Y.Kuroyanagi https://doi.org/10.1163/156856299X00199
  29. J. Dermatol. Sci. v.23 D.Y.Lee;H.T.Ahn;K.H.Cho https://doi.org/10.1016/S0923-1811(00)00068-2
  30. J. Invest. Dermatol. v.92 C.Bernard;L.Corinne;D.Louis https://doi.org/10.1111/1523-1747.ep13071335
  31. New. Engl. J. Med. v.341 A.J.Singer;R.A.F.Clark https://doi.org/10.1056/NEJM199909023411006
  32. Dermatol. Surg. v.21 W.H.Eaglstein;M.Iriondo;K.Laszlo https://doi.org/10.1016/1076-0512(94)00290-8