• Title/Summary/Keyword: Polymer powder

Search Result 527, Processing Time 0.027 seconds

Drying Shrinkage of High-Fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 고유동 폴리머 시멘트 모르타르의 건조수축)

  • Lee, Youn-Su;Joo, Myung-Ki;Chung, In-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.296-299
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the setting time and drying shrinkage of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the setting time of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio, regardless of the antifoamer conten,. Irrespective of the antifoamer content, the drying shrinkage of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Drying Shrinkage of Polymer-Modified Mortar Using redispersible Polymer Powder (재유화형 분말수지를 혼입한 폴리머 시멘트 모르타르의 건조수축)

  • Joo, Myung-Ki;Lee, Youn-Su;Yeon, Kyu-Seok;Jo, Kyu-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.165-168
    • /
    • 2002
  • The effects of polymer-cement ratio, antifoamer agent content and shrinkage-reducing agent content on the drying shrinkage of polymer-modified mortars using redispersible polymer powder are examined. As a result, irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Such a drying shrinkage development is due to the effect of reducing water from incorporation of EVA redispersible polymer powder and antifoamer agent.

  • PDF

Drying Shrinkage and Strength Properties of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머시멘트 모르타르의 건조수축 및 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

Early Strength and Properties of EVA Powder Modified High Strength Concrete (EVA Powder 개질 고강도 콘크리트의 초기강도 및 수밀특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.123-127
    • /
    • 2005
  • EVA Powder modified high strength concretes were prepared by varying polymer/binder mass ratio with a constant water/binder mass ratio of 0.3. The effect of EVA powder on the slump, hydration heat, compressive and flexural strength, toughness and water absorption ratio was studied. In hydration heat test, temperature of hydration reaction displayed almost fixed level regardless of containing rate of EVA powder, but peak time of hydration reaction displayed late inclination as containing rate of powder increases. With the same water/binder mass ratio, the compressive strength and water absorption of EVA powder modified concretes decreased slightly when EVA powder was added and the flexural strength of EVA powder modified concretes rised slightly when EVA powder was added. Also, the toughness of the modified concretes can be improved markedly. The interpenetrating structure between the polymeric phase and cement hydrates formed at a $2{\sim}6%$(containing rate of EVA powder). The properties of the polymer modified concretes were influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases.

  • PDF

fundamental Properties of Water-Permeable Polymer-Modified Concrete (투수성 폴리머 시멘트 콘크리트의 기공적 성질)

  • 이윤수;주명기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.402-408
    • /
    • 2002
  • The permeable polymer-modified concrete has a lot of internal voids, which has more excellent performance in permeability and durability than asphalt and cement concrete. Therefore, the purpose of this study is to ascertain the strength properties of water-permeable polymer concretes with SBR latex and redispersible polymer powder. The water-permeable polymer concretes using SBR latex and redispersible polymer powder with water-binder ratio of 29 %, polymer-cement ratios of 0, 5, 10, 15 and 20 % are prepared, and tested for compressive strength, splitting tensile strength, flexural strength, water permeablility. From the test results, improvements in the strength properties of the water-permeable polymer concretes due to the addition of the SBR latex and redispersible polymer powder are discussed.

Strength Properties of High-Fluidity Polymer-Modified Mortar (고유동 폴리머 시멘트 모르타르의 강도 특성)

  • Joo, Myung-Ki;Lee, Youn-Su;Chung, In-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.312-315
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the strength of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content, regardless of the antifoamer content. However, the compressive strength of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Properties of Strength of Ultrarapid-Hardening Polymer-Modified Mortar (초속경 폴리머 시멘트 모르타르의 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki;Yeon, Kyu-Seok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.115-118
    • /
    • 2001
  • The effects of polymer-cement ratio and shrinkage-reducing agent content on the strength properties of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.

Performance Evaluation of Prepackaged-Type Low Shrinkage Surface Preparation materials Using Redispersible Polymer Powder (재유화형 분말수지를 이용한 프리페키지드형 저수축 표면조정재의 성능평가)

  • ;Demura, Katsunori
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.368-373
    • /
    • 1998
  • Prepackaged system consists out of a dry mix which contains cement, sand, redispersible polymer powder and admixtures in the right proportions. The purpose of this study is to evaluate the quality of prepackaged-type polymer-modified mortar products using redispersible poly(ethylene-vinyl acetate)(EVA) powder. Polymer-modified mortars using the redispersible polymer powder with powdered with powdered shrinkage-reducing agent were prepared with cellulose fiber contents of 0, 0.5, 1.0% and shrinkage-reducing agent contents of 0, 4%, and tested for drying shrinkage, strength, adhesion in tension, water absorption. From the test results, the prepackaged-type polymer-modified mortar products with 4% of shrinkage-reducing agent content give good properties. and that their properties largely depends on the shrinkage-reducing agent content rather than the cellulose fiber contents.

  • PDF

The Electrical Property of Polymer Matrix Composites Added Carbon Powder

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.678-682
    • /
    • 2015
  • The electrical property of polymer matrix composites with added carbon powder is studied based on the temperature dependency of the conduction mechanism. The temperature coefficient of the resistance of the polymer matrix composites below the percolation threshold (x) changed from negative to positive at 0.20 < x < 0.21; this trend decreased with increasing of the percolation threshold. The temperature dependence of the electrical property(resistivity) of the polymer matrix composites below the percolation threshold can be explained by using a tunneling conduction model that incorporates the effect of the thermal expansion of the polymer matrix composites into the tunneling gap. The temperature coefficient of the resistance of the polymer matrix composites above the percolation threshold has a positive value; its absolute value increased with increasing volume fraction of carbon powder. By assuming that the electrical conduction through the percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of the carbon power, the temperature dependency of the resistivity above the percolation threshold can be well explained without violating the universal law of conductivity.