• Title/Summary/Keyword: Polymer membranes

Search Result 761, Processing Time 0.026 seconds

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.

Effect of Mesoporous TiO2 in Facilitated Olefin Transport Membranes Containing Ag Nanoparticles (나노입자가 포함된 촉진수송 분리막에서의 메조기공 티타늄산화물의 영향)

  • Kim, Sang Jin;Jung, Jung Pyu;Kim, Dong Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.398-405
    • /
    • 2015
  • Facilitated transport is considered to be a possible solution to simultaneously improve permeability and selectivity, which is challenging in normal polymeric membranes based on solution-diffusion transport only. We investigated the effect of adding mesoporous $TiO_2$ ($m-TiO_2$) upon the separation performance of facilitated olefin transport membranes comprising poly(vinyl pyrrolidone), Ag nanoparticles, and 7,7,8,8-tetracyanoquinodimethane as the polymer matrix, olefin carrier, and electron acceptor, respectively. In particular, $m-TiO_2$ was prepared by means of a facile, mass-producible method using poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymer as the template. The crystal phase of $m-TiO_2$ consisted of an anatase/rutile mixture, of crystallite size approximately 16 nm as determined by X-ray diffraction. The introduction of $m-TiO_2$ increased the membrane diffusivity, thereby increasing the mixed-gas permeance from 1.6 to 16.0 GPU ($1GPU=10^{-6}cm^3$(STP)/($s{\times}cm^2{\times}cmHg$), and slightly decreased the propylene/propane selectivity from 45 to 37. However, both the mixed-gas permeance and selectivity of the membrane containing $m-TiO_2$ rapidly decreased over time, whereas the membrane without $m-TiO_2$ had more stable long-term performance. This difference might be attributed to specific chemical interactions between $TiO_2$ and Ag nanoparticles, causing Ag to lose activity as an olefin carrier.

Effect of Ozone on Gas Separation Membranes for On-Board Inert Gas Generation System (OBIGGS) (OBIGGS용 기체 분리막에서 오존이 미치는 영향)

  • Jung, Kyung Nam;Woo, Seung Moon;Kim, Se Jong;Kim, Ji Hyeon;Han, Sang Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.406-413
    • /
    • 2018
  • In OBIGGS, a small amount of ozone in the atmosphere damages the polymer membrane. Therefore, the ozone removal device is installed at the front end to prevent the damage of the membrane by reducing the concentration of ozone in the gas delivered to the membrane. In this study, two hollow fiber membranes, PI and PSf, used to fabrication hollow fiber module with an effective membrane area of $6.37cm^2$ for gas separation in OBIGGS. The ozone concentration in the chamber was maintained at 2-3 ppm. The gas was continuously supplied into the module by using a pump. The gas permeation characteristics and the tensile strength were evaluated as a function of ozone exposure time. The PI-based hollow fiber membrane showed only 20% reduction in the transmittance, and remained its original uniformity without any significant changes. However, when PSf type hollow fiber membranes were used, the permeability decreased by more than 80% and the tensile strength decreased by more than 70%.

Hydrophilic Treatment of Porous Substrates for Pore-Filling Membranes (세공충진막을 위한 다공성 지지체 친수화 처리)

  • Dahye Jeong;Minyoung Lee;Jong-Hyeok Park;Yeri Park;Jin-Soo Park
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, we employed anionic, cationic, and nonionic surfactants for the hydrophilization of porous substrates used in the fabrication of pore-filling membranes. We investigated the extent of hydrophilization based on the type of surfactant, its concentration, and immersion time. Furthermore, we used the hydrophilized substrates to produce pore-filling anion exchange membranes and compared their ion conductivity to determine the optimal hydrophilization conditions. For the ionic surfactants used in this study, we observed that hydrophilization progressed rapidly from the beginning of immersion when the applied concentration was 3.0 wt%, compared to lower concentrations (0.05, 0.5, and 1.0 wt%). In contrast, for the relatively larger molecular weight non-ionic surfactants, smooth hydrophilization was not observed. There was no apparent correlation between the degree of hydrophilization and the ion conductivity of the anion exchange membrane. This discrepancy suggests that an excessive hydrophilization process during the treatment of porous substrates leads to excessive adsorption of the surfactant on the sparse surfaces of the porous substrate, resulting in a significant reduction in porosity and subsequently decreasing the content of polymer electrolyte capable of ion exchange, thereby greatly increasing the electrical resistance of the membrane.

Non-Fickian Diffusion of Organic Solvents in Fluoropolymeys (불소고분자내 유기용매의 비-픽 확산)

  • 이상화
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.24-34
    • /
    • 2004
  • Transient sorption experiments were conducted among several combinations of fluoropolymers and various organic solvents. Fully fluorinated polymer tended to exhibit ideal sorption behavior, while partially fluorinated polymers showed anomalous sorption behaviors with a drastic acceleration at the final stage of uptake. Minimization of least-squares of the measured and predicted fractional uptake, which indicated the increasing degree of deviation from Fickian diffusion, gave values of 3.0${\times}$10$\^$-4/, 1.75${\times}$10$\^$-3/, 8.68${\times}$10/sup-3/, 1.75${\times}$10$\^$-2/, respectively, for perfluoroalkoxy copolymer, poly(ethylene-co-tetrafluoroethylene), poly(vinylidene fluoride), poly(ethylene-co-chlorotrifluoroethylene). From stress-strain tests, it was confirmed that non-Fickian diffusion is closely related to the significant variation of mechanical properties (such as modulus and tensile strength) of swollen polymer. Anomalous sorption behavior stemmed from non-Fickian diffusion caused by nonlinear disruption of polar inter-segmental bonds due to solvent-induced plasticization. Thus, it is imperative to investigate the diffusion behavior of swelling solvents in partially fluorinated polymers, especially for the application to barrier materials or perm-selective membranes.

Synthesis and characterization of sulfonated poly(arylene biphenylsulfone ether) copolymers containing hydroquinone moiety for polymer electrolyte membrane (고분자 전해질 멤브레인용 하이드로퀴논 부분이 포함된 설폰화된 폴리(아릴렌 비페닐설폰 에테르) 공중합체의 합성과 특성평가)

  • Yoo, Dong-Jin
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • In present work, sulfonated poly(arylene biphenyklsulfone ether) copolymers containing hydroquinone moiety were successfully synthesized using 4,4'-bis[(4-chlorophenyl)sulfonyl]-1,1'-biphenyl(BCPSBP), hydroquinone sulfonic acid potassium salt(sHQ), 4,4'-sulfonyldiphenol and evaluated their characteristics. Three kinds of polymer electrolyte membranes, PBPSEH-HQ00, PBPSEH-HQ10 and PBPSEH-HQ30 were prepared by using mole fraction of sulfonated hydroquinone(sHQ). The structure of the fabricated polymers was analyzed using NMR, IR and GPC. The Mw(weight-average molecular weights) of the polymers were in the range of 62,000-213,000 g $mol^{-1}$, and the molecular weight distribution (Mw/Mn) varied from 1.66-4.04. The thermal analysis of the copolymers was carried out by TGA and DSC. The temperature of Td5% and Td10% was decreased with the mole fraction of sHQ but Tg was increased with the mole fraction. The water uptake, IEC and ion conductivity were increased with increasing the ionic cluster of the polymers. The proton conductivity equal to 9.4 mS $cm^{-1}$ was measured for the PBPSEH-HQ30 membrane at $90^{\circ}C$ and 100% relative humidity. From the observed results it is clear that the prepared hydrocarbon membrane can be considered as suitable polymer electrolyte membrane for the application of PEMFC.

Characterization of Water Treatment Membrane Using Various Hydrophilic Coating Materials (다양한 친수성 코팅소재를 이용한 수처리 분리막의 특성 평가)

  • Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.60-67
    • /
    • 2017
  • Recently, the economic, social and environmental significance of the water industry is increasing significantly due to rapid global urbanization, population growth, and imbalance in demand and supply of water resulted by climate change. The type of these water industries are all different and they can be distinguished by the kinds of membranes used. Mainly, polymer materials that have excellent physical and chemical stability are used, but recently various methods of assigning hydrophilicity have been introduced due to their hydrophobic properties. In this study, hydrophilic polymers of four types were introduced into a commercially available hollow support to assign hydrophilicity. Furthermore, the morphology of the coated hollow support through FE-SEM was confirmed as well. Also the contact angle was measured to examine the degree of hydrophilicity of the coated hollow support with each polymer. Finally,.effect of different time on water permeability as well as the relationship between water permeability and hydrophilic polymers were investigated. As a result, the coating with 1 wt% of pluronic has good hydrophilicity degree, and shows the excellent water permeability without blocking the pore of the hollow fiber. Therefore, it can be concluded that the hydrophilic coating using pluronic polymer is most suitable as the water treatment.

Cross-Linked PGMA-co-PMMA/DAAB Membranes for Propylene/Nitrogen Separation (프로필렌/질소 분리를 위한 가교 구조의 PGMA-co-PMMA/DAAB 분리막)

  • Kim, Na Un;Park, Byeong Ju;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.252-259
    • /
    • 2020
  • Olefins are industrially important materials used for the synthesis of various petrochemicals. During the polymerization process, unreacted olefin monomers are discharged together with a large amount of nitrogen. For economic benefits, these olefin gases should be efficiently separated from nitrogen. In this study, a poly(glycidyl methacrylate-co-methyl methacrylate) (PGM) comb-like copolymer was synthesized and 4,4'-diaminoazobenzene (DAAB) was introduced to the copolymer to prepare a cross-linked membrane for C3H6/N2 separation. PGM and DAAB were readily reacted at room temperature through an epoxide-amine reaction without additional thermal treatment. PGM-based membrane, which is a glassy polymer, showed a faster permeation of N2 compared to C3H6. The pristine PGM membrane exhibited the N2 permeability of 0.12 barrer and the high N2/C3H6 selectivity of 32.4. As DAAB was introduced as a cross-linker, the thermal stability of the membrane was significantly improved, which was confirmed by TGA result. The N2/C3H6 selectivity was decreased at 1 wt% of DAAB content, but the N2 permeability increased by approximately 4.7 times. We analyzed N2/C3H6 gas separation properties through a glassy polymer-based membrane, which has not been widely studied. Also, we proposed that thermal stability of the membrane can be greatly improved by the cross-linking method.

Characterization of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 특성)

  • Kwon, Ji-Young;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility has been combined with lactide, the ester dimer of polylactide, with good biodegradability to produce biocompatible materials which can control the period of degradation in a human body. By freeze frying method, HA and lactide were crosslinked with crosslinking agent, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Degree of lactide and EDC reaction was determined by the analysis of nuclear magnetic resonance spectroscopy. Both lactyl group and EDC conversion increased as the mole ratio of lactide to HA increased from 5 to 13. The membrane swelled less and became more brittle with the more addition of lactyl group resulting from the higher mole ratio of lactide to HA. Swelling ratio decreased and tensile modulus increased due to the more addition of lactyl group as the EDC concentration increased or reaction temperature decreased. Drug release experiment from various membranes with different degree of crosslinking showed that permeability decreased with increasing degree of crosslinking. The degradation became slower with the more addition of lactyl group. Mechanical property and degradation rate of the synthesized membrane were shown to be controlled through adjusting operation parameters such as mole ratio, temperature, and crosslinking agent concentration.

Preparation and Characterization of Proton Conducting Crosslinked P(VDF-co-CTFE)-MAA/SEMA membranes (수소이온 전도성 가교된 P(VDF-co-CTFE)-MAA/SEMA 막 제조 및 분석)

  • Patel, Rajkumar;Lei, Zeng Xiao;Heo, Sung Yeon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.290-296
    • /
    • 2013
  • Poly(vinylidenefluoride-co-chlorotrifluoroethylene) P(VDF-co-CTFE) polymer was attached to methacrylic acid (MAA) in the presence of 1,8-diazabicyclo[5,4,0]undec-7-ene(DBU) catalyst to prepare P(VDF-co-CTFE)-MAA copolymer. The modified P(VDF-co-CTFE)-MAA was polymerized with 2-sulfoethyl methacrylate (SEMA) monomer in the presence of 4',4'-azobis(4-cyanovaleric acid(ACVA) initiator by free radical polymerization to form the proton conducting membrane. The ratio of the SEMA was increased in the membrane to increase the presence of the acidic group. The maximum IEC value that was observed at 50% SEMA was around 0.82 meq/g, which is consistent with the water uptake value. The highest proton conductivity achieved by P(VDF-co-CTFE)-MAA/SEMA membrane with 50% SEMA was approximately 0.041 S/cm. This indicates that the available ionic group for the proton conduction increases with the increase in the SEMA in the membrane.