• Title/Summary/Keyword: Polymer material

Search Result 2,957, Processing Time 0.031 seconds

Effects of Temperature and Binder Components on Working Life of Fresh MMA Modified UP Polymer Concrete (굳지 않은 MMA개질 UP 폴리머 콘크리트의 사용가능시간에 미치는 온도와 결합재의 영향)

  • Yeon, Jung-Heum;Hyun, Sang-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.51-61
    • /
    • 2012
  • PURPOSES : This study deals with the working life of polymer concrete, which is typically used as a repair or overlay material for portland cement concrete pavements. METHODS : In the scope of this study, laboratory testing was conducted on fresh MMA modified UP polymer concrete, which uses an MMA monomer for viscosity adjustment and strength improvement of UP resin. The experimental variables were temperature (-20 to $+20^{\circ}C$) and binder components (MMA, MEKPO, and DMA). RESULTS : The result showed that the optimum binder ratios for polymer concrete production were 12, 11, and 10 wt.% when the MMA contents were 20, 30, and 40 wt.%, respectively. The working life of polymer concrete depending on temperature and binder components could be expressed by a logarithmic functional formula. The coefficient of variation for each binder component was the highest for DMA content while the lowest for MEKPO content. Also, the contents of each binder component for ensuring the working life of 60 minutes were proposed. CONCLUSIONS : Ultimately, the present study derived a linear regression equation estimating 60 minutes working life based on the setting times of each binder component.

Shear Behavior of Polymer Cement High Strength Concrete Beams Mixed with Steel Fiber (강섬유 혼입 폴리머 시멘트 고강도 콘크리트 보의 전단거동)

  • 곽계환;박종건;곽경헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.93-102
    • /
    • 2002
  • Steel fiber and polymer are used widely for reinforcement material of RC structures because of its excellences of the durability, serviceability as well as mechanical properties. The purpose of this study is to investigate the shear behavior of polymer cement high strength concrete beams mixed with steel fiber. The compressive strength of concrete was based on the 100$\times$200 mm cylinder specimens. The compressive strength of concrete are 320$kgf/cm^2$, 436 $kgf/cm^2$ and 520 $kgf/cm^2$ in the 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. Also, load-strain and load-deflection examined. During the test cracks were sketched against the load values according to the growth of crack. result are as follows; (1) The failure modes of the specimens are increased in rigidity and durability with mixing steel fiber and polymer. (2) The load of initial crack was similar a theory of shear-crack strength. (3) The deflection and strain at failure load of Polymer-steel fiber high strength concrete beams were increased, improving the brittleness of the high strength concrete.

Reliability Assessment of Forest Fire on EHV Polymer Insulator Strings (송전용 폴리머애자의 산불 영향 신뢰성 평가)

  • Min, Byeong-Wook;Shin, Tai-Woo;Choi, In-Hyuk;Choi, Han-Yeol;Park, Jae-Ung;Yu, Kun-Yang
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.436-437
    • /
    • 2006
  • Porcelain insulators have generally been used in Korea but polymer insulators which are superior in that they are light weight, explosion proof, impact proof, economical with construction characteristics, have been in use for the 154kV transmission line since 1999 following a worldwide trend towards the reduced weight, simplification and compact usage of new material insulators. However there have been approximately 500 cases of forest fires in Korea, so the transmission lines that for the most part pass through mountainous areas have been highly effected and the highly polymerized compound polymer insulator has raised concern about reliability in cases of exposure to forest fires. Therefore for the reliability assessment of the effect of forest fires on polymer insulators, mechanical and electrical characteristics are analyzed by an artificial flare test device and transmission facility surrounding conditions along with forest fire characteristics are surveyed. In addition to this, actual 90kV energized transmission line was tested with an artificial forest fire and the expanded usage of polymer insulators is presented through the analysis of mechanical and electrical characteristics and physical properties, and a study on the influence of forest fires on polymer insulators.

  • PDF

Preparation of Polymer-modified Mortars with Recycled PET and Their Sound Absorption Characteristics (재활용 PET 를 이용한 고분자 몰타르의 제조 및 흡음 특성)

  • Hong, Byung-Pyo;Byun, Hong-Sik
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.410-414
    • /
    • 2010
  • Two different types of polymer-modified mortars(PMM) were prepared with recycled PET and fly-ash. One is rigid PMM and the other is flexible PMM which are based on the composition of recycled PET. Their mechanical properties including friction coefficient measurement and damping characteristics such as sound absorption were investigated and compared with the commercial PMM such as epoxy PMM and PET PMM. The result from mechanical properties indicated that the rigid PMM could be competitive with the commercial PET PMM. The measurement of sound absorption coefficient showed that both rigid PMM and flexible PMM had much better damping capacity than commercial PMM. However, the friction coefficient of rigid PMM revealed that it would be suitable for the use as floor material.

Morphology Evolution of Poly(L-lactic acid) (PLLA), Poly(ε-caprolactone) (PCL) and Polyethylene Oxide (PEO) Ternary Blend and Their Effects on Mechanical Properties for Bio Scaffold Applications (폴리락틱산, 폴리카프로락톤, 폴리에틸렌 옥사이드 삼성분계 블렌드의 형태학적 변화와 이들이 의료용 스캐폴더의 기계적 특성에 미치는 영향)

  • Ezzati, Peyman;Ghasemi, Ismaeil;Karrabi, Mohammad;Azizi, Hamed;Fortelny, Ivan
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Ternary blends of poly(L-lactic acid) (PLLA), poly(${\varepsilon}$-caprolactone) (PCL) and polyethylene oxide (PEO) were produced with different concentrations of components via melt blending. By leaching the PEO from the samples by water, porous materials were obtained with potential application for bio scaffolds. Sample porosity was evaluated by calculating the ratio of porous scaffold density (${\rho}^*$) to the non-porous material density (${\rho}_s$). Highest porosity (51.42%) was related to the samples containing 50 wt%. of PEO. Scanning electron microscopy (SEM) studies showed the best porosity resulted by decreasing PLLA/PCL ratio at constant concentration of PEO. Crystallization behavior of the ternary blend samples was studied using differential scanning calorimetry (DSC). Results revealed that the crystallinity of PLLA was improved by addition of PEO and PCL to the samples. The porosity plays a key role in governing the compression properties. Mechanical properties are presented by Gibson-Ashby model.

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

A Study on Polymer Surface Treatment Using Plasma (플라즈마를 이용한 고분자물질의 표면처리에 관한 연구)

  • Park Hee-Lyun;Lim Jong-Min;Seul Soo-Duk;Lee Woo-Nae;Moon Jin-bok
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.94-100
    • /
    • 2005
  • The plasma, ionized gas state, is generally composed as the 4th state in the universe. Generating the plasma artificially has been studied by spending energy and it has been applied so much in human's life. There are several merits to modify the surface of polymer using plasma. Above all, plasma maintains the properties of polymer itself, but changes the properly of polymer surface only. Also, it is the environmentally fraternized because there are no waste processing from organic solvent. Furthermore, it is possible that continuous automated-processing in case of high-pressure plasma. Therefore, we have tried the reforming of surface to rise the adhesive strength between the material of polymer, and have experimented rising the adhesive strength through peel strength by virtue of processing time and using gas, of course, confirmed the change of polymer surface through measuring the contact angle analysis and scanning electron microscopy(SEM).

Study on Analysis of Vulcanized Rubber by Pyrolysis-Gas Chromatography(I) (Vulcanizates of NR BR and SBR) (Pyrolysis-Gas Chromatography를 이용한 가황 고무의 열분석에 관한연구(I) (NR, BR 및 SBR의 가황체))

  • Huh, D.S.;Kim, J.S.;Kim, K.J.;Ahn, B.K.;Suh, S.K.;Han, O.K.
    • Elastomers and Composites
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 1987
  • A coil pyrolyzer and processor-controlled gas chromatograph were used for analysis of rubber for compounding ratio of the single and blend rubber vlucanizates. Variables such as sample size, pyrolysis temperature, time allowed for pyrolysis, the column packing material, its length and programmable temperature for gas chromatography were examined to obtain optimum condition for application to NR, BR and SBR blends. By application fixed conditions, three kinds of standard curves were finally obtained from thirty samples of blend vulcanizates which were prepared in the pilot plant, NIRI. It is possible to determine rubber composition and their ratio in NR, BR and SBR products by pyrolysis.

  • PDF

Surface and Tracking Properties of Polymer Suspension Insulator for Power Transmission with secular variation (경년열화에 따른 송전용 폴리머 현수애자의 표면 및 트래킹 성능)

  • Cho, Han-Goo;Lee, Un-Yong;Han, Se-Won;Han, Dong-Hee;Huh, Jong-Chul;Choi, In-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.233-236
    • /
    • 2004
  • Recently, the polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. The shape design of porcelain insulator is formalized but design standard for polymer insulator is no standardized up to now, much research is necessary in real condition. In this paper, the surface and tracking properties of polymer suspension insulator for power transmission is investigated with ICP-AES, SEM, EDX, tracking wheel test and flashover voltage test. The diagnosis of insulator sample in tracking test hass been analyzed by leakage current STRI Guide and thermal image.

  • PDF

Fabrication of Conductive Polymer Resistors Using Ink-jet Printing Technology (잉크젯 프린팅 기술을 이용한 전도성 폴리머 저항의 제작)

  • Lee, Sang-Ho;Kim, Myong-Ki;Shin, Kwon-Yong;Kang, Kyung-Tae;Park, Moon-Soo;Hwang, Jun-Young;Kang, Heui-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.98-99
    • /
    • 2007
  • This study has successfully demonstrated the direct fabrication of polymer resistors using ink-jet printing technology as an alternative patterning to traditional photolithography. The polymer resistors were fabricated just by two layer processes using a ink-jet printer (DMP-2800, Fujifilm Dimatix). First, resistive materials was patterned by a ink-jet printing with the desired width and length. Next, resistor fabrication was completed by printing metal contact pads on the both sides of the polymer resistor. We used poly (3,4-ethylene dioxythiophene) poly(styrenesulfonate)(PEDOT:PSS) for the resistor material and a nano-sized silver colloid for the metal contact pads. We characterized the electrical properties of PEDOT:PSS by measuring sheet resistance and specific resistance on a glass substrate. From analysis of the measured resistances, the electrical resistances of the polymer resistors linearly increased as a function of printed width and length of resistors. The accuracy of the fabricated polymer resistor showed about $0.6{\sim}2.5%$ error for the same dimensions.

  • PDF