• Title/Summary/Keyword: Polymer etching

Search Result 162, Processing Time 0.022 seconds

A Study on The Improvement of Profile Tilting or Bottom Distortion in HARC (높은 A/R의 콘택 산화막 에칭에서 바닥모양 변형 개선에 관한 연구)

  • Hwang, Won-Tae;Kim, Gli-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.389-395
    • /
    • 2005
  • The etching technology of the high aspect ratio contact(HARC) is necessary at the critical contact processes of semiconductor devices. Etching the $SiO_{2}$ contact hole with the sub-micron design rule in manufacturing VLSI devices, the unexpected phenomenon of 'profile tilting' or 'bottom distortion' is often observed. This makes a short circuit between neighboring contact holes, which causes to drop seriously the device yield. As the aspect ratio of contact holes increases, the high C/F ratio gases, $C_{4}F_{6}$, $C_{4}F_{8}$ and $C_{5}F_{8}$, become widely used in order to minimize the mask layer loss during the etching process. These gases provide abundant fluorocarbon polymer as well as high selectivity to the mask layer, and the polymer with high sticking yield accumulates at the top-wall of the contact hole. During the etch process, many electrons are accumulated around the asymmetric hole mouth to distort the electric field, and this distorts the ion trajectory arriving at the hole bottom. These ions with the distorted trajectory induce the deformation of the hole bottom, which is called 'profile tilting' or 'bottom distortion'. To prevent this phenomenon, three methods are suggested here. 1) Using lower C/F ratio gases, $CF_{4}$ or $C_{3}F_{8}$, the amount of the Polymer at the hole mouth is reduced to minimize the asymmetry of the hole top. 2) The number of the neighboring holes with equal distance is maximized to get the more symmetry of the oxygen distribution around the hole. 3) The dual frequency plasma source is used to release the excessive charge build-up at the hole mouth. From the suggested methods, we have obtained the nearly circular hole bottom, which Implies that the ion trajectory Incident on the hole bottom is symmetry.

Coating and Etching Technologies for Indirect Laser processing of Printing Roll (인쇄 롤의 간접식 레이저 가공을 위한 코팅과 에칭 기술)

  • Lee, Seung-Woo;Kim, Jeong-O;Kang, HeeShin
    • Laser Solutions
    • /
    • v.16 no.4
    • /
    • pp.12-16
    • /
    • 2013
  • For mass production of electronic devices, the processing of the printing roll is one of the most important key technologies for printed electronics technology. A roll of printing process, the gravure printing that is used to print the electronic device is most often used. The indirect laser processing has been used in order to produce printing roll for gravure printing. It consists of the following processing that is coating of photo polymer or black lacquer on the surface of printing roll, pattering using a laser beam and etching process. In this study, we have carried out study on the coating and etching for $25{\mu}m$ line width on the printing roll. To do this goals, a $4{\mu}m$ coating thickness and 20% average coating thickness of the coating homogeneity of variance is performed. The factors to determine the thickness and homogeneity are a viscosity of coating solution, the liquid injection, the number of injection, feed rate, rotational speed, and the like. After the laser patterning, a line width of $25{\mu}m$ or less was confirmed to be processed through etching and the chromium plating process.

  • PDF

Reactive ion Etching Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100) 기판위에 성장된 3C-SiC의 RIE 특성)

  • Jung, Soo-Yong;Woo, Hyung-Soon;Jin, Dong-Woo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.892-895
    • /
    • 2003
  • This paper describes on RIE(Reactive Ion Etching) characteristics of 3C-SiC(Silicon Carbide) grown on Si(100) wafers. During RIE of 3C-SiC films in this work, $CHF_3$ gas is used to form of polymer as a side wall for excellent anisotropy etching. From this process, etch rates are obtained a $60{\sim}980{\AA}/min$ by various conditions such as $CHF_3$ gas flux, $O_2$ addition ratio, RF power and electrode distance. Also, approximately $40^{\circ}$ mesa structures are successfully formed at 100 mTorr $CHF_3$ gas flow ratio, 200 W RF power and 30 mm electrode distance. Moreover, vertical side wall is fabricated by anisotropy etching with 50% $O_2$ addition ratio and 25 mm electrode distance. Therefore, RIE of 3C-SiC films using $CHF_3$ could be applicable as fabrication process technology for high-temperature 3C-SiC MEMS applications.

  • PDF

Study of Aging and Durability on Plasma Polymerized Tire Cords (플라즈마 중합 코팅된 타이어 코드의 노화에 따른 접착력 변화 연구)

  • Kang, H.M.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • Steel tire cords were subjected to plasma polymerization coating of acetylene in order to enhance the adhesion to rubber compounds. Plasma polymerization coating was varied to plasma polymerization coating of acetylene, argon plasma etching+plasma polymerization, or argon plasma. etching+plasma polymerization with Ar carrier gas. Adhesion was evaluated via TCAT samples and compared to those with brass coated tire cord. For durability study, plasma polymer cooled tire cords were aged in lab atmosphere for 1, 3, 5, 10 or 15 days, while TCAT specimens prepared with plasma polymer coated tire cords were aged in distilled water, 10% NaCl solution or $100^{\circ}C$ oven for 1, 2, 3 or 4 weeks. After testing, failure surfaces were analyzed with SEM/EDX. Among the treatments, the highest adhesion was obtained by Ar etching+acetylene plasma. polymerization coating with Ar carrier gas, providing almost same pull-out force as the brass coated tire cords. Upon the aging of the tire cords in the lab atmosphere, brass coated tire cords provided better adhesion than plasma polymer coated tire cords, while the TCAT samples with plasma polymer coated tire cords exhibited similar or slightly superior durability to those with brass coated tire cords.

  • PDF

Surface Modification of Steel Tire Cords via Plasma Etching and Plasma Polymerization Coating : Part II. Characterization (플라즈마 고분자 코팅에 의한 강철 타이어 코드의 표면 개질 : 제2부. 타이어 코드의 분석)

  • Kang, H.M.;Chung, K.H.;Kaang, S.;Yoon, T.H.
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.63-70
    • /
    • 2000
  • Zinc plated steel tire cords were subjected to RF plasma etching of argon, followed by plasma polymerization coating of acetylene or butadiene in order to enhance adhesion to rubber compounds. Plasma polymerization was carried out under optimized conditions of 10 W, 30 sec, 30 mTorr for acetylene and butadiene gas, while plasma etching was performed at 90W, 10min and 30mTorr. The adhesion of tire cords was evaluated via Tire Cords Adhesion Test (TCAT) and the failure surfaces of the tested samples were analyzed by SEM. Polymer coating by plasma polymerization was also characterized by FT-IR, Alpha-Step and dynamic contact angle analyzer in order to elucidate the adhesion mechanism.

  • PDF

Surface Modification of Steel Tire Cords via Plasma Etching and Plasma Polymer Coating : Part I. Adhesive properties (플라즈마 고분자 코팅에 의한 강철 타이어 코드의 표면 개질 : 제1부. 타이어 코드의 접착성)

  • Kang, H.M.;Chung, K.H.;Kaang, S.;Yoon, T.H.
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.53-62
    • /
    • 2000
  • Zinc plated steel tire cords were treated with RF plasma polymerization coating of acetylene or butadiene in order to enhance adhesion to rubber compounds. Plasma polymerization was carried out as a function of plasma power, treatment tune and gas pressure. In order to maximize adhesion, argon plasma etching was performed, with carrier gas such as argon, nitrogen and oxygen, while the adhesion of tire cords was evaluated via TCAT. Best results were obtained from a combination treatment of argon etching (90 W. 10 min, 30 mTorr) and acetylene plasma polymerization coating (10 W, 30 sec, 30 mTorr) with argon carrier gas (25/5:acetylene/argon). These samples exhibited a pull out force of 285N which is comparable to that obtained from the brass plated tire cords (290N).

  • PDF

Anisotropic etching of polysilicon in a $Cl_2/CH_3Br/O_2$ Plasma

  • Yi, Whi-Kun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • The characteristic behaviors of CH3Br were examined first for the dry etching of polysilicon in a Cl2/CH3Br/O2 plasma. CH3Br is revealed one of the excellent additive gases to control anisotropy of etching profile and to give no undercutting for various typed of polysilicons. CH3Br acts as a passivation precursor on the side wall in etch cavity by forming polymer-like films such as CHxBry(x+y=1,2). The decrease of etch selectivity due to the reaction if the C-containing species from CH3Br with the surface O atoms of SiO2 was overcome by the addition of O2 into plasma, resulting that the selectivity increased by 2~3 times. According to the results of optical emission signals, CH3Br should be dissociated into several fragments to give more hydrogen atoms than bromine atoms in our helical resonator system.

  • PDF

A Study on the Etcting Technology for Metal Interconnection on Low-k Polyimide (Low-k Polyimide상의 금속배선 형성을 위한 식각 기술 연구)

  • Mun, Ho-Seong;Kim, Sang-Hun;An, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.450-455
    • /
    • 2000
  • For further scaling down of the silicon devices, the application of low dielectric constant materials instead of silicon oxide has been considered to reduce power consumption, crosstalk, and interconnection delay. In this paper, the effect of $O_2/SF_6$ plasma chemistry on the etching characteristics of polyimide-one of the promising low-k interlayer dielectrics-has been studied. The etch rate of polyimide decreases with the addition of $SF_6$ gas due to formation of nonvolatile fluorine compounds inhibiting reaction between oxygen and hydrocarbon polymer, while applying substrate bias enhances etching process through physical attack. However, addition of small amount of $SF_6$ is desirable for etching topography. $SiO_2$ hard mask for polyimide etching is effective under $O_2$plasma etching(selectivity~30), while $O_2/SF_6$ chemistry degrades etching selectivity down to 4. Based on the above results, $1-2\mu\textrm{m}$ L&S PI2610 patterns were successfully etched.

  • PDF

A study on polycrystalline 3C-SiC etching with magnetron applied reactive ion etching for M/NEMS applications (마그네트론 RIE을 이용한 M/NEMS용 다결정 3C-SiC 식각 연구)

  • Chung, Gwiy-Sang;Ohn, Chang-Min;Nam, Chang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.197-201
    • /
    • 2007
  • The magnetron reactive ion etching (RIE) characteristics of polycrystalline (poly) 3C-SiC grown on $SiO_{2}$/Si substrate by APCVD were investigated. Poly 3C-SiC was etched by $CHF_{3}$ gas, which can form a polymer as a function of side wall protective layers, with additive $O_{2}$ and Ar gases. Especially, it was performed in magnetron RIE, which can etch SiC at a lower ion energy than a commercial RIE system. Stable etching was achieved at 70 W and the poly 3C-SiC was undamaged. The etch rate could be controlled from $20\;{\AA}/min$ to $400\;{\AA}/min$ by the manipulation of gas flow rates, chamber pressure, RF power, and electrode gap. The best vertical structure was improved by the addition of 40 % $O_{2}$ and 16 % Ar with the $CHF_{3}$ reactive gas. Therefore, poly 3C-SiC etched by magnetron RIE can expect to be applied to M/NEMS applications.

Fabrication of the Printed Circuit Board by Direct Photosensitive Etch Resist Patterning (감광성 에칭 레지스트의 잉크젯 인쇄를 이용한 인쇄회로 기판 제작)

  • Park, Sung-Jun;Lee, Ro-Woon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.97-103
    • /
    • 2007
  • A novel selective metallization process to fabricate the fine conductive line based on inkjet printing has been investigated. Recently, Inkjet printing has been widely used in flat panel display, electronic circuits, biochips and bioMEMS because direct inkjet printing is an alternative and cost-effective technology for patterning and fabricating objects directly from design without masks. The photosensitive etching resist used in this process is an organic polymer which becomes solidified when exposed to ultraviolet lights and has high viscosity at ambient temperature. A piezoelectric-driven inkjet printhead is used to dispense 20-30 ${\mu}m$ diameter droplets onto the copper substrate to prevent subsequent etching. Repeatability of circuitry fabrication is closely related to the formation of steady droplets, adhesion between etching resist and copper substrate. Therefore, the ability to form small and stable droplets and surface topography of the copper surface and chemical attack must be taken into consideration for fine and precise patterns. In this study, factors affecting the pattern formation such as adhesion strength, etching mechanism, UV curing have been investigated. As a result, microscale copper patterns with tens of urn high have been fabricated.