• 제목/요약/키워드: Polymer battery

검색결과 324건 처리시간 0.043초

The characteristics of polymer electrolyte for lithium polymer battery

  • Park Soo-Gil;Park Jong-Eun;Lee Ju-Seong
    • 전기화학회지
    • /
    • 제2권1호
    • /
    • pp.1-4
    • /
    • 1999
  • 리튬이차전지는 충방전의 반복 동안의 액체전해질과 리튬음극과의 반응으로 수지상결정의 성장으로 리튬이 차전지에 있어서 안전성의 문제를 일으킨다. 고분자 전해질은 수지상 결정 형성을 억제하며 전해질에 성능을 향상시키는 연구가 활발히 진행중이다. 본 연구에서는 겔 전해질에 $Al_2O_3$를 첨가하여 전해질의 표면구조와 임피던스 특성을 조사하였다. 리튬이온의 수율은 $10wt\%\;PAN-Al_2O_3$ 전해질에 5mV의 전압을 인가했을 때 0.29였고 전해질의 이온전도도는 상온에서$2.3\times10^{-4} S/cm$였다. 무기 충진제가 고분자 전해질에 첨가되었을 때 이온전도도 및 이온수율은 무기 충진제가 첨가되지 않은 것보다 높게 나타났다.

리튬이온 배터리용 음극 합금/폴리머 복합체 바인더 패브릭 (Fabrication of petroleum pitch/polymer composite binder for anode material in lithium-ion battery)

  • 정현택
    • 한국응용과학기술학회지
    • /
    • 제40권6호
    • /
    • pp.1191-1200
    • /
    • 2023
  • The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.

Semi-interpenetrating Solid Polymer Electrolyte for LiCoO2-based Lithium Polymer Batteries Operated at Room Temperature

  • Nguyen, Tien Manh;Suk, Jungdon;Kang, Yongku
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.250-255
    • /
    • 2019
  • Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) show promise for improving the lithium ion battery safety. However, due to oxidation of the PEO group and corrosion of the Al current collector, PEO-based SPEs have not previously been effective for use in $LiCoO_2$ (LCO) cathode materials at room temperature. In this paper, a semi-interpenetrating polymer network (semi-IPN) PEO-based SPE was applied to examine the performance of a LCO/SPE/Li metal cell at different voltage ranges. The results indicate that the SPE can be applied to LCO-based lithium polymer batteries with high electrochemical performance. By using a carbon-coated aluminum current collector, the Al corrosion was mostly suppressed during cycling, resulting in improvement of the cell cycle stability.

Radical Polymers and Organic Radical Battery

  • Nishide, Hiroyuki
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.62-62
    • /
    • 2006
  • Based on the redox couples of a nitroxide radical, organic radical polymers were utilized as the electrode-active or charge-storage component for a secondary battery. We call a battery composed of the radical polymer electrode as "organic radical battery". Organic radical battery has several advantages: high capacity, high power-rate performance, long cycle ability, and environmentally-benign features. Synthesis and electrochemical studies of nitroxide polymers are described. Battery fabrication and cell performance are also reported.

  • PDF

리튬폴리머 전지의 전기적 모델링 (Electrical Modeling of Lithium-Polymer Battery)

  • 임재관;임덕영;;최재호;정교범
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.199-207
    • /
    • 2011
  • 전기 장치용 리튬폴리머 전지의 전기적 모델링은 전기에너지 공급시스템의 특성을 파악하는데 매우 중요하다. 본 논문은 리튬폴리머 전지의 동적특성을 모사하기 위한 전기적 등가 모델을 제안하였다. 리튬폴리머 전지의 충/방전 실험은 Maccor 8500 충방전시험장치를 사용하였다. 측정된 데이터를 이용하여 전지의 R-C 값을 선정하였으며, 선정된 값은 다항식 함수와 지수 함수를 사용하여 수식으로 나타내었다. 시뮬레이션 결과와 실험결과를 비교하여 제안된 모델의 타당성을 검증하였다

리튬이온폴리머전지용 가교형 겔폴리머전해질의 중합조건 최적화 연구 (Optimization Study on Polymerization of Crosslink-type Gel Polymer Electrolyte for Lithium-ion Polymer Battery)

  • 김현수;문성인;김상필
    • 한국전기전자재료학회논문지
    • /
    • 제18권1호
    • /
    • pp.68-74
    • /
    • 2005
  • In this work, polymerization conditions of the gel polymer electrolyte (GPE) were studied to obtain better electrochemical performances in a lithium-ion polymer battery. When the polymerization temperature and time of the GPE were 70$^{\circ}C$ and 70 min, respectively, the lithium polymer battery showed excellent a rate capability and cycleability. The TMPETA (trimethylolpropane ethoxylate triacrylate)/TEGDMA (triethylene glycol dimethacrylate)-based cells prepared under optimized polymerization conditions showed excellent rate capability and low-temperature performances: The discharge capacity of cells at 2 Crate showed 92.1 % against 0.2C rate. The cell at -20 $^{\circ}C$ also delivered 82.4 % of the discharge capacity at room temperature.

리튬폴리머 축전지의 철도차량 적용 및 용량증대에 관한 연구 (A Study on the Rail Vehicle Applications and Increase the Capacity of Lithium Polymer Batteries)

  • 조규화;강승욱
    • 전기학회논문지P
    • /
    • 제65권4호
    • /
    • pp.340-345
    • /
    • 2016
  • Railway vehicle battery is supplying the power required for the initial start-up of the train, in the event of a fault in the vehicle, or catenary for supplying emergency power is one of the components are very important. Currently, the railway vehicles such as nickel-cadmium batteries are being used [1,2]. Ni-Cd batteries as a battery installed in the railway vehicles have a strong corrosion resistance is included, The charge-discharge performance is significantly degraded in cold weather, there is a danger of deterioration or explosion. Train accidents have been caused a lot of damage due to rapid deterioration and cracking of the battery and memory due to the effect of Ni-Cd batteries. In order to solve the problems, There is no risk of degradation, deterioration and leakage, cracking and exploding. maintenance is simple and applied measures proposed to apply Lithium Polymer battery of high performance. In addition, the lack of capacity problems identified by testing the different special systems is replaced by a 70Ah lithium-polymer battery is possible without changing the batteries of 50Ah caused by installing additional equipment in existing older trains were applied to the vehicle.

리튬 폴리머 전지의 충방전 특성해석 (Charge/Discharge Characteristics Analysis of Li-Polymer battery)

  • 최해룡;강병희;목형수;최규하;신우석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.222-225
    • /
    • 1999
  • Started upon it discovery by Wright et al in 1973, studies on the solid polymer electrolyte are being carried out vigorously. So, models of Li-polymer battery have been developed through R-L-C components combination and P-spice functional block in this paper. The impedance characteristics of Li-polymer battery with R-L-C components are presented. Simulation results using P-spice functional model are compared with measured charge/discharge characteristics.

  • PDF