• Title/Summary/Keyword: Polykrikos

Search Result 18, Processing Time 0.015 seconds

Growth and ingestion rates of heterotrophic dinoflagellates and a ciliate on the mixotrophic dinoflagellate Biecheleria cincta

  • Yoo, Yeong Du;Yoon, Eun Young;Lee, Kyung Ha;Kang, Nam Seon;Jeong, Hae Jin
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.343-354
    • /
    • 2013
  • To explore the interactions between the mixotrophic dinoflagellate Biecheleria cincta (previously Woloszynskia cincta) and heterotrophic protists, we investigated whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oxyrrhis marina, and Polykrikos kofoidii, and the ciliate Strobilidium sp. were able to feed on B. cincta. We also measured growth and ingestion rates of O. marina and Strobilidium sp. on B. cincta as a function of prey concentration. In addition, these rates were measured for other predators at single prey concentrations at which the growth and ingestion rates of O. marina and Strobilidium sp. were saturated. All grazers tested in the present study were able to feed on B. cincta. B. cincta clearly supported positive growth of O. marina, G. dominans, and Strobilidium sp., but it did not support that of G. moestrupii, G. spirale, and P. kofoidii. The maximum growth rates of Strobilidium sp. and O. marina on B. cincta (0.91 and 0.49 $d^{-1}$, respectively) were much higher than that of G. dominans (0.07 $d^{-1}$). With increasing the mean prey concentration, the specific growth rates of O. marina and Strobilidium sp. on B. cincta increased, but either became saturated or slowly increased. The maximum ingestion rate of Strobilidium sp. (1.60 ng C $predator^{-1}\;d^{-1}$) was much higher than that of P. kofoidii and O. marina (0.55 and 0.34 ng C $predator^{-1}\;d^{-1}$) on B. cincta. The results of the present study suggest that O. marina and Strobilidium sp. are effective protistan grazers of B. cincta.

Feeding by common heterotrophic protist predators on seven Prorocentrum species

  • You, Ji Hyun;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;Park, Sang Ah;Lim, An Suk
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.61-78
    • /
    • 2020
  • Species belonging to the dinoflagellate genus Prorocentrum are known to cause red tides or harmful algal blooms. To understand the dynamics of a Prorocentrum sp., its growth and mortality due to predation need to be assessed. However, there are only a few Prorocentrum spp. for which heterotrophic protist predators have been reported. We explored feeding by the common heterotrophic dinoflagellates Gyrodinium dominans, Oxyrrhis marina, Pfiesteria piscicida, Oblea rotunda, and Polykrikos kofoidii and the naked ciliate Strombidinopsis sp. (approx. 90 ㎛ cell length) on the planktonic species Prorocentrum triestinum, P. cordatum, P. donghaiense, P. rhathymum, and P. micans as well as the benthic species P. lima and P. hoffmannianum. All heterotrophic protists tested were able to feed on the planktonic prey species. However, O. marina and O. rotunda did not feed on P. lima and P. hoffmannianum, while G. dominans, P. kofoidii, and Strombidinopsis sp. did. The growth and ingestion rates of G. dominans and P. kofoidii on one of the seven Prorocentrum spp. were significantly different from those on other prey species. G. dominans showed the top three highest growth rates when it fed on P. triestinum, P. cordatum, and P. donghaiense, however, P. kofoidii had negative growth rates when fed on these three prey species. In contrast, P. kofoidii had a positive growth rate only when fed on P. hoffmannianum. This differential feeding on Prorocentrum spp. between G. dominans and P. kofoidii may provide different ecological niches and reduce competition between these two common heterotrophic protist predators.

Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum

  • Lee, Kyung Ha;Jeong, Hae Jin;Yoon, Eun Young;Jang, Se Hyeon;Kim, Hyung Seop;Yih, Wonho
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.153-163
    • /
    • 2014
  • Mesodinium rubrum is a cosmopolitan ciliate that often causes red tides. Predation by heterotrophic protists is a critical factor that affects the population dynamics of red tide species. However, there have been few studies on protistan predators feeding on M. rubrum. To investigate heterotrophic protists grazing on M. rubrum, we tested whether the heterotrophic dinoflagellates Gyrodiniellum shiwhaense, Gyrodinium dominans, Gyrodinium spirale, Luciella masanensis, Oblea rotunda, Oxyrrhis marina, Pfiesteria piscicida, Polykrikos kofoidii, Protoperidinium bipes, and Stoeckeria algicida, and the ciliate Strombidium sp. preyed on M. rubrum. G. dominans, L. masanensis, O. rotunda, P. kofoidii, and Strombidium sp. preyed on M. rubrum. However, only G. dominans had a positive growth feeding on M. rubrum. The growth and ingestion rates of G. dominans on M. rubrum increased rapidly with increasing mean prey concentration < $321ngCmL^{-1}$, but became saturated or slowly at higher concentrations. The maximum growth rate of G. dominans on M. rubrum was $0.48d^{-1}$, while the maximum ingestion rate was 0.55 ng C $predator^{-1}d^{-1}$. The grazing coefficients by G. dominans on populations of M. rubrum were up to $0.236h^{-1}$. Thus, G. dominans may sometimes have a considerable grazing impact on populations of M. rubrum.

Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates

  • Kang, Hee Chang;Jeong, Hae Jin;Jang, Se Hyeon;Lee, Kyung Ha
    • ALGAE
    • /
    • v.34 no.2
    • /
    • pp.127-140
    • /
    • 2019
  • The species in the dinoflagellate order Suessiales have 5-24 latitudinal paraplate series and include many fossil and extant species. There have been a few studies on the ecophysiology of the phototrophic species Biecheleriopsis adriatica, and no study on its predators. Thus, we explored the feeding occurrence by common heterotrophic protists on B. adriatica and the growth and ingestion rates of the heterotrophic dinoflagellate Oxyrrhis marina on B. adriatica BATY06 as a function of prey concentration. The common heterotrophic dinoflagellates Aduncodinium glandula, O. marina, Gyrodinium dominans, Gyrodinium moestrupii, Luciella masanensis, Pfiesteria piscicida, and Oblea rotunda and two naked ciliates Strombidinopsis sp. and Pelagostrobilidium sp. were able to feed on B. adriatica, but the heterotrophic dinoflagellate Polykrikos kofoidii was not. However, B. adriatica supported the positive growth of O. marina, but did not support that of G. dominans and O. rotunda. With increasing prey concentrations, the growth and ingestion rates of O. marina on B. adriatica increased and became saturated. The maximum growth rate of O. marina on B. adriatica was $0.162d^{-1}$. Furthermore, the maximum ingestion rate of O. marina on B. adriatica was $0.2ng\;C\;predator^{-1}\;d^{-1}$ ($2.0cells\;predator^{-1}\;d^{-1}$). In the order Suessiales, the feeding occurrence by common heterotrophic protists on B. adriatica is similar to that on Effrenium voratum and Biecheleria cincta, but different from that on Yihiella yeosuensis. However, the growth and ingestion rates of O. marina on B. adriatica are considerably lower than those on E. voratum and B. cincta, but higher than those on Y. yeosuensis. Therefore, B. adriatica may be less preferred prey for O. marina than E. voratum and B. cincta, but more preferred prey than Y. yeosuensis.

Relationship Between Dinoflagellate Cyst Distribution in Surface Sediments and Phytoplankton Assemblages from Gwangyang Bay, a Southern Coastal area of Korea (한국 남해 연안 광양만 표층 퇴적물의 와편모조류 시스트 분포 특성과 식물플랑크톤 군집과의 비교)

  • 김소영;문창호;조현진
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2003
  • To describe dinoflagellate cysts from Gwangyang Bay, surface sediment samples were collected at 20 sites by the TFO core sampler on 24 August 2001, in coupled with a phytoplankton investigation by surface seawater sampling. More than 17 genera, 36 species of dinoflagellate cysts were Identified from the sediment samples of Gwangyang Bay, consisting of 14 species of gonyaulacoid, 14 species of protoperidinioid, 3 species of diplopsalid, 2 species of gymnodinioid, 1 species of tuberculodinioid and calciodinellid, respectively. Cyst concentrations in Gwangyang Bay varied from 115 to 2,188 cysts/g, and generally increased toward a western part of the study area. The highest cyst concentration was observed at St. 11 located in the northwestern region with 11 genera and 19 species(2,188 cysts/g), while the lowest value with 6 genera and 9 species(115 cysts/g) was observed at St. 3 located in the center of the study area. The predominant dinoflagellate cyst was Spiniferites bulloideus, followed by Alexandrium sp., Brigantedinium simplex and S. delicatus. The motile forms of eight dinoflagellate cysts recorded in the sediment samples were also observed in the seawater: Polykrikos swartzii/kofoidii complex, Scripssiella trochoidea, Protoperidinium claudicans(cyst name: Votadinium spinosum), P. pentagonum(: Trinovantedinium capitatum capitatum), P. conicum(: Selenopemphix quanta), P. leonis(: Quinquecuspis concretum), P. conicoides(: Brigantedinium simplex), Gonyaulax spp.(: Spiniferites spp.). In this study, heterotrophic dinoflagellate cysts show the highest concentration at St. 6 where the highest density of diatoms simultaneously observed from surface water sample. This result suggests that the grazing of heterotrophic dinoflagellates on the diatoms in high concentration caused the higher concentration of heterotrophic dinoflagellate cysts.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists

  • Lee, Moo Joon;Jeong, Hae Jin;Kim, Jae Seong;Jang, Keon Kang;Kang, Nam Seon;Jang, Se Hyeon;Lee, Hak Bin;Lee, Sang Beom;Kim, Hyung Seop;Choi, Choong Hyeon
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.285-308
    • /
    • 2017
  • Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in many countries. To investigate the roles of metazooplankton in red tide dynamics of C. polykrikoides in the South Sea of Korea, the abundance of metazooplankton was measured at 60 stations over 1- or 2-week intervals from May to November 2014. In addition, the grazing impacts of dominant metazooplankton on red tide species and their potential heterotrophic protistan grazers were estimated by combining field data on the abundance of red tide species, heterotrophic protist grazers, and dominant metazooplankton with data obtained from the literature concerning ingestion rates of the grazers on red tide species and heterotrophic protists. The mean abundance of total metazooplankton at each sampling time during the study was 297-1,119 individuals $m^{-3}$. The abundance of total metazooplankton was significantly positively correlated with that of phototrophic dinoflagellates (p < 0.01), but it was not significantly correlated with water temperature, salinity, and the abundance of diatoms, euglenophytes, cryptophytes, heterotrophic dinoflagellates, tintinnid ciliates, and naked ciliates (p > 0.1). Thus, dinoflagellate red tides may support high abundance of total metazooplankton. Copepods dominated metazooplankton assemblages at all sampling times except from Jul 11 to Aug 6 when cladocerans and hydrozoans dominated. The calculated maximum grazing coefficients attributable to calanoid copepods on C. polykrikoides and Prorocentrum spp. were 0.018 and $0.029d^{-1}$, respectively. Therefore, calanoid copepods may not control populations of C. polykrikoides or Prorocentrum spp. Furthermore, the maximum grazing coefficients attributable to calanoid copepods on the heterotrophic dinoflagellates Polykrikos spp. and Gyrodinium spp., which were grazers on C. polykrikoides and Prorocentrum spp., respectively, were 0.008 and $0.047d^{-1}$, respectively. Therefore, calanoid copepods may not reduce grazing impact by these heterotrophic dinoflagellate grazers on populations of the red tide dinoflagellates.

Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020

  • Eom, Se Hee;Jeong, Hae Jin;Ok, Jin Hee;Park, Sang Ah;Kang, Hee Chang;You, Ji Hyun;Lee, Sung Yeon;Yoo, Yeong Du;Lim, An Suk;Lee, Moo Joon
    • ALGAE
    • /
    • v.36 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • The mixotrophic dinoflagellate Tripos furca causes red tides in the waters of many countries. To understand its population dynamics, mortality due to predation as well as growth rate should be assessed. Prior to the present study, the heterotrophic dinoflagellates Noctiluca scintillans, Polykrikos kofoidii, Protoperidinium steinii, and mixotrophic dinoflagellate Fragilidium subglobosum were known to ingest T. furca. However, if other common heterotrophic protists are able to feed on T. furca has not been tested. We explored interactions between T. furca and nine heterotrophic dinoflagellates and one naked ciliate. Furthermore, we investigated the abundance of T. furca and common heterotrophic protists in coastal-offshore waters off Yeosu, southern Korea, on Jul 31, 2020, during its red tide. Among the tested heterotrophic protists, the heterotrophic dinoflagellates Aduncodinium glandula, Luciella masanensis, and Pfiesteria piscicida were able to feed on T. furca. However, the heterotrophic dinoflagellates Gyrodiniellum shiwhaense, Gyrodinium dominans, Gyrodinium jinhaense, Gyrodinium moestrupii, Oblea rotunda, Oxyrrhis marina, and the naked ciliate Rimostrombidium sp. were unable to feed on it. However, T. furca did not support the growth of A. glandula, L. masanensis, or P. piscicida. Red tides dominated by T. furca prevailed in the South Sea of Korea from Jun 30 to Sep 5, 2020. The maximum abundance of heterotrophic dinoflagellates in the waters off Yeosu on Jul 31, 2020, was as low as 5.0 cells mL-1, and A. glandula, L. masanensis, and P. piscicida were not detected. Furthermore, the abundances of the known predators F. subglobosum, N. scintillans, P. kofoidii, and Protoperidinium spp. were very low or negligible. Therefore, no or low abundance of effective predators might be partially responsible for the long duration of the T. furca red tides in the South Sea of Korea in 2020.

Feeding by common heterotrophic protists on the mixotrophic dinoflagellate Ansanella granifera (Suessiaceae, Dinophyceae)

  • Hee Chang Kang;Hae Jin Jeong;An Suk Lim;Jin Hee Ok;Ji Hyun You;Sang Ah Park;Se Hee Eom
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.57-70
    • /
    • 2023
  • The mortality rate of red-tide dinoflagellates owing to predation is a major parameter that affects their population dynamics. The dinoflagellates Ansanella granifera and Ansanella sp. occasionally cause red tides. To understand the interactions between common heterotrophic protists and A. granifera, we explored the feeding occurrence of nine heterotrophic protists on A. granifera and the growth and ingestion rates of the heterotrophic dinoflagellate Gyrodinium dominans on A. granifera as a function of prey concentration and those of Oxyrrhis marina at a single high prey concentration. The heterotrophic dinoflagellates Aduncodinium glandula, G. dominans, Gyrodinium moestrupii, Luciella masanensis, Oblea rotunda, O. marina, Polykrikos kofoidii, and Pfiesteria piscicida and the naked ciliate Strombidium sp. were able to feed on A. granifera. With increasing mean prey concentrations, the growth and ingestion rates of G. dominans feeding on A. granifera rapidly increased and became saturated or slowly increased. The maximum growth and ingestion rates of G. dominans on A. granifera were 0.305 d-1 and 0.42 ng C predator-1 d-1 (3.8 cells predator-1 d-1), respectively. Furthermore, the growth and ingestion rates of O. marina on A. granifera at 1,700 ng C mL-1 (15,454 cells mL-1) were 0.037 d-1 and 0.19 ng C predator-1 d-1 (1.7 cells predator-1 d-1), respectively. The growth and ingestion rates of G. dominans and O. marina feeding on A. granifera were almost the lowest among those on the dinoflagellate prey species. Therefore, G. dominans and O. marina may prefer A. granifera less than other dinoflagellate prey species. The low mortality rate of A. granifera may positively affect its bloom formation.