• Title/Summary/Keyword: Polyimide Film

Search Result 408, Processing Time 0.023 seconds

Enhancement of adhesion between Cu thin film and Polyimide modified by ion assisted reaction (이온보조 반응법에 의하여 표면처리된 Polyimide (PI) 표면과 구리박막의 접착력 향상)

  • 석진우
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.4 no.1
    • /
    • pp.19-30
    • /
    • 1997
  • 고분자 Polyimide (PI) film 표면을 반응성 가스 분위기에서 1KeV의 에너지를 가지 는 여러 종류의 이온빔으로 조사하여 표면을 개질하였다. PI표면의 친수성과 표면에너지를 측정하기 위해 접촉각 측정기를 사용하였으며 개질 된 표면의 화학적 변화를 측정하기 위해 X-ray photoelectron spectroscopy (XPS)를 사용하였다. 표면 개질을 위한 이온조사량은 5 $\times$1014 -1$\times$1017 ions/cm2이며 반응가스는 0-8scm까지 변화시켰다. 아르곤 이온빔으로 표면 개질시에는 67。에서 40。까지 감소하였고 표면에너지는 46 dyne/cm에서 64dyne/cm까지 증가하였다. 산소를 6sccm 주입하면서 산소 이온빔으로 표면 개질시 물과의 접촉각은 67。 에서 최대 12。까지 감소하였으며 표면에너지는 46dyne/cm에서 72dyne/cm까지 증가하였고 이때의 이온조사량은 5$\times$1014 -1$\times$1017 ions/cm2 이였다. 여러 종류의 반응성 가스와 이온을 사용하여 개질하여 본 결과 산소분위기에서 산소 이온을 이용하여 개질 하였을 때 접촉각이 8。인 표면을 얻을수 있었다, 산소분위기에서 아르곤 이온빔으로 1$\times$1017 ions/cm2 의 이온 조사량으로 개질 된 Pi 시료를 대기 중에 보관하였을 때에는 110시간 후 65。로 증가하였고 물속에서 보관하였을 때에는 46。로 증가하였다. 그러나 산소 이온빔에 산소분위기에서 개 질 된 시료의 경우 물속에 보관할 경우 접촉강의 증가없이 일정한 값을 나타내었다. 이온조 사로 개질된 시료의 화학적 변화를 확인하기 위하여 XPS 사용하였다. 표면 개질 전의 PI 시료와 산소 분위기에서 1$\times$1017 ions/cm2의 아르곤 이온빔으로 개질한 XPS peak 결과로 보아 Cls의 spectra를 보면 C-C, C-N 그리고 C=O의 결합들은 intensity가 감소하였고 C-O 의 intensity는 증가하였다. Nls peak로 보아 imide N 성분은 이온빔의 조사로 인하여 감소 하였고 C-O의 intensity는 증가하였다. Nls peakk로 보아 imide N성분은 이온빔의조사로 감소하였고 Ols peak로 보아 C-O는 증가하였고 C=O는 약간의 감소가 나타났다. 또한 이온 보조 반응법을 이용하여 처리한 시료의 경우 접착력이 증가하는데 이는 주로 C-O 결합의 산소와 Cu와의 상호작요에 의한 것임을 알수 있었다.

Interfacial Adhesion between Screen-Printed Ag and Epoxy Resin-Coated Polyimide (에폭시수지가 도포된 폴리이미드와 스크린 프린팅 Ag 사이의 계면접착력 평가)

  • Park, Sung-Cheol;Kim, Jae-Won;Kim, Ki-Hyun;Park, Se-Ho;Lee, Young-Min;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The interfacial adhesion strengths between screen-printed Ag film and epoxy resin-coated polyimide were evaluated by $180^{\circ}$ peel test method. Measured peel strength value was initially around $164.0{\pm}24.4J/m^2$, while the heat treatment during 24h at $120^{\circ}C$ increase peel strength up to $220.8{\pm}19.2J/m^2$. $85^{\circ}C/85%$ RH temperature/humidity treatment decrease peel strength to $84.1{\pm}50.8J/m^2$, which seems to be attributed to hydrolysis bonding reaction mechanism between metal and adhesive epoxy resin coating layer.

Fabrication of an Inkjet-printed Plastic Force Sensor Using PEDOT:PSS (PEDOT:PSS를 이용한 잉크젯 프린팅 방식 플라스틱 힘 센서 개발)

  • Lee, Wanghoon;Son, Sun-Young;Koo, Jungsik;Yeom, Se-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.390-394
    • /
    • 2019
  • This paper presents an inkjet-printed plastic force sensor using PEDOT:PSS. Using a piezoelectric-type inkjet printer, the force sensor was manufactured by printing PEDOT:PSS ink onto a polyimide (PI) substrate film. Applying a vertical force of 0 to 100 N to the force sensor on the PI substrate with a thickness of 64 mm, the resistance of the force sensor increased in proportion to the input force by the length deformation of the PI substrates and the sensor pattern. As a result, the fabricated sensor has a characteristic of 0.001% /N with a linearity of 99.38%. In addition, as the thickness of the PI substrate film increased, the sensitivity of the sensor increased linearly. The fabricated force sensor is expected to be applied to industrial sites and healthcare fields.

Survival of the Insulator under the electrical stress condition at cryogenic temperature

  • Baek, Seung-Myeong;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.10-14
    • /
    • 2013
  • We have clearly investigated with respect to the survival of the insulator at cryogenic temperature under the electrical stress. The breakdown and voltage-time characteristics of turn-to-turn models for point contact geometry and surface contact geometry using copper multi wrapped with polyimide film for an HTS transformer were investigated under AC and impulse voltage at 77 K. Polyimide film (Kapton) 0.025 mm thick is used for multi wrapping of the electrode. As expected, the breakdown voltages for the surface contact geometry are lower than that of the point contact geometry, because the contact area of the surface contact geometry is lager than that of the point contact geometry. The time to breakdown t50 decreases as the applied voltage is increased, and the lifetime indices increase slightly as the number of layers is increased. The electric field amplitude at the position where breakdown occurs is about 80 % of the maximum electric field value. The relationship between survival probability and the electrical stress at cryogenic temperature was evident.

Switching conduction characteristics of PI LB Film in MIM junctions (Polyimide(PI)LB막의 MIM구조 소자내에서의 switching전도특성)

  • ;;Mitsumasa Iwamoto
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.176-183
    • /
    • 1995
  • The present work is concerned with the switching conduction characteristics of PI LB films in metal insulator metal sandwiches. By applying various DC voltage bias to MIM junctions, conduction characteristics of junctions can be changed between the high-voltage low-current(off) condition, the low-voltage high-current (on) condition and the medium(mid) condition. Switching conduction characteristics can be also observed in MIM junctions employing some aromatic compounds as insulators. Switching conduction characteristics is assumed to be owing to the existence of aromatic rings, space charge in films, impurities on metal-insulator interface, and difference in work functions of base and top electrodes metal. To study the conduction process of on, off, and mid conductions, we measured I-V, d$^{2}$V/d I$^{2}$-V characteristics of junctions with several different top electrodes under various temperatures. Small conductance changes of junctions can be measured by observing the second derivative, d$^{2}$V/dI$^{2}$, of I-V curve. A dynamical technique is used to get the second derivatives. That is, a finite modulation of the current is applied to the junctions and the second harmonic of the voltage is detected.

  • PDF

Generation of High Pretilt Angle in Liquid Crystal Cell with Slanted Non-Polarized Ultraviolet Light Irradiation on Polyimide Film as for Non-Rubbing Techniques (경사진 자외선을 폴리이미드막 표면에 조사한 넌러방법에 의한 액정소자의 고 프리틸트각의 발생)

  • Seo, Dae-Shik;Hwang, Lyul-Yeon;Lee, Bo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1585-1587
    • /
    • 1997
  • We investigated the generation of high pretilt angle for nematic liquid crystal (NLC) in the cell with slanted non-polarized ultraviolet (UV) light irradiation on two kinds of the polyimide (PI) film. It was shown that the monodomain alignment in NLC is obtained in the cell with slanted non-polarized UV light irradiation on PI surface. The pretilt angle of NLC is generated about 3 degrees in the cell with slanted non-polarized UV light irradiation with 70 degrees on PI surface without side chain. But, the pretilt angle of NLC is generated about 1 degree in the cell with slanted non-polarized UV light irradiation with 80 degrees on PI surface with side chain. We consider that the pretilt angle generation in NLC is attributted to anisotropic dispersion force between the LC molecular and the PI surface.

  • PDF

Electrical Insulation Characteristics of HTS SMES (고온초전도 SMES의 절연특성)

  • Cheon Hyeon-Gweon;Choi Jae-Hyeong;Kwag Dong-Soon;Kim Hae-Jong;Seong Ki-Chul;Yun Mun-Soo;Kim Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.574-578
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. Using multi wrapped copper by Polyimide film for HTS SMES, the breakdown characteristics of models for turn-to-turn, that is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on breakdown voltage under at and impulse voltage in $LN_2$ was carried.

Electrical Properties by Applied Electric Field of Polyimide Ultra Thin Films (Polyimide초박막의 전계인가에 따른 전기특성)

  • Choi, Y.I.;Chon, D.K.;Koo, H.B.;Kim, C.;Kyun, Y.S.;Lee, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.73-76
    • /
    • 1998
  • We give pressure stimulation into organic thin films and detect the induced displacement current. then manufacture a device under the accumulation condition that the state surface pressure is 15[mN/m]. In processing of a device manufacture. We can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/organic thin films(polyimide)/Au, the number of accumulated layers are 31,35, and 41. I-V characteristic of the device is measured from 0[V] to +5[V]. The maximum value of measured current is increased as the number of accumulated layers are decreased. The resistance for the number of accumulated layers, the energy density for an input voltage show desired results, and the insulation of a thin film is better as the interval between electrodes is larger.

  • PDF

Study on the Electrical Insulation of Current Lead in the conduction-cooled 1-2kV Class High-Tc Superconducting DC Reactor (전도냉각되는 1-2kV급 고온초전도 직류리액터 전류도입부의 전기적 절연에 대한 연구)

  • 배덕권;안민철;이찬주;정종만;고태국;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.30-34
    • /
    • 2002
  • In this Paper, Insulation of current lead in the conduction-cooled DC reactor for the 1.2kV class 3 high-Tc superconducting fault current limiter(SFCL) is studied. Thermal link which conducts heat energy but insulates electrical energy is selected as a insulating device for the current lead in the conduction-cooled Superconducting DC reactor. It consists of oxide free copper(OFC) sheets, Polyimide films, glass fiberglass reinforced Plastics (GFRP) plates and interfacing material such an indium or thermal compound. Through the test of dielectric strength in L$N_2$, polyimide film thickness of 125 ${\mu}{\textrm}{m}$ is selected as a insulating material. Electrical insulation and heat conduction are contrary to each other. Because of low heat conductivity of insulator and contact area between electrical insulator and heat conductor, thermal resistance of conduction-cooled system is increased. For the reducing of thermal resistance and the reliable contact between Polyimide and OFC, thermal compound or indium can be used As thermal compound layer is weak layer in electrical field, indium is finally selected for the reducing of thermal resistance. Thermal link is successfully passed the test. The testing voltage was AC 2.5kVrms and the testing time was 1 hour.

Improvement of Permeation of Applied Multi-layer Encapsulation of Thin Films on Ethylene Terephthalate(PET) (고분자 기판위에 다층 구조의 박막형 보호층을 적용한 투습률 향상)

  • Kim Jong-Hwan;Han Jin-Woo;Kim Young-Hwan;Seo Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.255-259
    • /
    • 2006
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. In this investigation, the SiON and Polyimide(PI) layer showed the most suitable properties. Under these conditions, the WVTR(water vapour transition rate) for PET can be reduced from level of $0.57\;g/m^2{\cdot}day$ (bare subtrate) to $1{\times}10^{-5}\;g/m^2{\cdot}day$ after application of a SiON and Polyimide layer. These results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.