• Title/Summary/Keyword: Polyethylene terephthalate

Search Result 393, Processing Time 0.023 seconds

Electrical and Optical Properties of the IZTO Thin Film Deposited on PET Substrates with SiO2 Buffer Layer (SiO2 버퍼층을 갖는 PET 기판위에 증착한 IZTO 박막의 전기적 및 광학적 특성)

  • Park, Jong-Chan;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.578-584
    • /
    • 2017
  • $SiO_2$ buffer layer (100 nm) has been deposited on PET substrate by electron beam evaporation. And then, IZTO (In-Zn-Sn-O) thin film has been deposited on $SiO_2$/PET substrate with different RF power of 30 to 60 W, working pressure, 1 to 7 mTorr, by RF magnetron sputtering. Structural, electrical and optical properties of IZTO thin film have been analyzed with various RF powers and working pressures. IZTO thin film deposited on the process condition of 50 W and 3 mTorr exhibited the best characteristics, where figure of merit was $4.53{\times}10^{-3}{\Omega}^{-1}$, resistivity, $4.42{\times}10^{-4}{\Omega}-cm$, sheet resistance, $27.63{\Omega}/sq.$, average transmittance (400-800 nm), 81.24%. As a result of AFM, all the IZTO thin film has no defects such as pinhole and crack, and RMS surface roughness was 1.147 nm. Due to these characteristics, IZTO thin film deposited on $SiO_2$/PET structure was found to be a very compatible material that can be applied to the next generation flexible display device.

Effect of Packaging Methods on Postharvest Quality of $Tah$ $Tasai$ Chinese Cabbage ($Brassica$ $campestris$ var. $narinosa$) Baby Leaf Vegetable (어린잎 채소 다채의 포장방법이 품질에 미치는 영향)

  • Lee, Jung-Soo;Lee, Youn-Suk
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The effect of the packing methods for enhancing the shelf life and improving the postharvest quality of the $tah$ $tasai$ Chinese cabbage baby leaf vegetable was studied during storage. Fresh baby leaf vegetables were packed in four commercial packaging types: (1) a non-perforated bag with a 0.03-mm oriented polypropylene (OPP) film; (2) a perforated bag with 1.0-mm-diameter holes on an OPP film; (3) a 0.40-mm polyethylene terephthalate (PET) container with a hinged lid; and (4) an expanded polystyrene (EPS) tray wrapped with a 0.02-mm polyvinyl chloride (PVC) film. The quality parameters, such as the weight loss, moisture content change, color difference, and appearance of the baby leaf vegetables were investigated. The baby leaf vegetables in the PET container and in the non-perforated OPP film bag showed relatively low weight loss, high moisture content, and good external appearance compared to those in the EPS tray and in the perforated OPP film bag during limited storage periods, at $16^{\circ}C$. The PET container also protected the baby leaf vegetables from physical damage. The study results will enable the selection of a better packaging system for extending the freshness and increasing the market ability of baby leaf vegetables.

Effects of oxygen partial pressure on the properties of indium tin oxide film on PET substrates by RF magnetron sputtering (RF 마그네트론 스퍼터링법에 의해 PET 기판 위에 증착된 ITO 박막의 특성에 대한 산소 분압의 영향)

  • Kim, Seon Tae;Kim, Tae Gyu;Cho, Hyun;Kim, Jin Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.252-255
    • /
    • 2014
  • Indium tin oxide (ITO) films with various oxygen partial pressure from 0 to $6{\times}10^{-5}$ Pa were prepared onto polyethylene terephthalate (PET) using RF magnetron sputtering at room temperature. The structural, electrical and optical properties of the grown ITO films were investigated as a function of the oxygen partial pressure. The amorphous nature of the ITO films was dominant at the partial pressure below $1{\times}10^{-5}$ Pa and the degree of crystallinity increased as the oxygen concentration increased further. This structural change comes with the increased carrier concentration and reduction of the electrical resistivity down to $9.8{\times}10^{-4}{\Omega}{\cdot}cm$. The average transmittance (at 400~800 nm) of the ITO deposited on the PET substrates increased as the oxygen partial pressure increased and transmittance above 80 % was achieved with the partial pressure of $4{\times}10^{-5}$ Pa. The results show that the choice of optimal oxygen partial pressure can present improved film crystallinity, the increased carrier concentration, and the enhancement in the electrical conductivity.

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.

Seismic Performance of Circular RC Columns Retrofitted Using Ductile PET Fibers (고연성 PET 섬유로 보강된 철근콘크리트 원형 기둥의 내진성능)

  • Vachirapanyakun, Sorrasak;Lim, Myung-Kwan;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.289-298
    • /
    • 2016
  • An experimental research was performed using fibers for the purpose of retrofitting existing reinforced concrete circular columns. Glass fiber (GF) and polyethylene terephthalate (PET) were used as well as combined GF+PET (HF). PET has high tensile strength (over 600 MPa) and high ductility (about 15%), but has very low elastic modulus (about 1/6 of GF). A total of four columns was tested against laterally applied reverse cyclic load: control column, GF-, PET-, and HF-strengthened columns. All columns retrofitted using fibers demonstrated improved moment capacity and ductility. Moment capacity of GF-, PET-, and HF-strengthened columns was 120%, 107%, and 120% of the control column, respectively. Drift ratio of all retrofitted columns also increased by 63 ~ 83% over the control column. The final failure mode of the control column was main bar buckling. The final failure mode of the GF- and HF-strengthened columns was GF rupture while that of the PET-strengthened column was main bar rupture in tension. No damage was observed for PET at the ultimate stage due to excellent strain capacity intrinsic to PET. Current test results indicate that PET can be effectively used for seismic retrofit of RC columns. It is noted that the durability characteristics of PET needs to be investigated in the future.

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

Prediction of Long-term Viscoelastic Performance of PET Film Using RH-DMA (RH-DMA를 적용한 PET 필름의 장기 점탄성 성능 예측)

  • Choi, Sun Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.382-387
    • /
    • 2019
  • A single frequency strain mode test, a stress relaxation mode test, and a creep test using RH-DMA were performed to investigate the effects of relative humidity and temperature on the viscous properties of PET film. The relative humidity was 10%, 30%, 50%, 70%, and 90%. The temperature was considered to be 30~95℃ for single frequency strain mode tests, 30℃ and 70℃ for stress relaxation mode test, and 5~95℃ for creep test. According to the results, higher relative humidity results in lower storage modulus and loss modulus, but the maximum value of the loss modulus is not significantly affected by changes in relative humidity and is almost constant. Relaxation modulus decreases rapidly at the beginning and becomes constant, and as the temperature increases, it is susceptible to changes in relative humidity. Strain recovery also increases rapidly at the beginning and is susceptible to changes in relative humidity as the temperature increases. In addition, as the temperature increases, the degree of increase in creep compliance increases, and as the temperature rises above the glass transfer temperature, the degree of increase becomes very large. The master curve determined by the time-temperature superposition provides the information to predict the long-term performance under operating conditions such as relative humidity and temperature.

Improving Microalgal Biomass Productivity and Preventing Biofouling in Floating Marine Photobioreactors via Sulfonation of Selectively Permeable Membranes (부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상)

  • Kim, Kwangmin;Lee, Yunwoo;Kim, Z-Hun;Park, Hanwool;Jung, Injae;Park, Jaehoon;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • The purpose of this study was to inhibit biofouling on a selectively permeable membrane (SPM) and increase biomass productivity in marine photobioreactors (PBRs) for microalgal cultivation by chemical treatment. Surfaces of a SPM, composed of polyethylene terephthalate (PET), was sulfonated to decrease hydrophobicity through attaching negatively charged sulfonic groups. Reaction time of sulfonation was varied from 0 min to 60 min. As the reaction time increased, the water contact angle value of SPM surface was decreased from $75.5^{\circ}$ to $44.5^{\circ}$, indicating decrease of surface hydrophobicity. Furthermore, the water permeability of sulfonated SPM was increased from $5.42mL/m^2/s$ to $10.58mL/m^2/s$, which reflects higher nutrients transfer rates through the membranes, due to decreased hydrophobicity. When cultivating Tetraselmis sp. using 100-mL floating PBRs with sulfonated SPMs, biomass productivity was improved by 34% compared with the control group (non-reacted SPMs). In addition, scanning electron microscopic observation of SPMs used for cultivation clearly revealed lower degree of cell attachment on the sulfonated SPMs. These results suggest that sulfornation of a PET SPM could improve microalgal biomass productivity by increasing nutrients transfer rates and inhibiting biofouling by algal cells.

Investigation of Compressive Strength and Foaming Characteristics of Acid Anhydride Epoxy Foam by Foaming Agent (발포제에 따른 산무수물계 에폭시 폼의 압축강도 및 포밍특성 분석)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Sung-Min;Kwon, Il-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.133-138
    • /
    • 2018
  • Polymer foams were used to fill the void in the structure in addition to flame retardant and heat insulation. Polymer foams such as polyurethane, polyisocyanurate, poly(vinyl chloride), polyethylene terephthalate were used to weight lighting materials. In this study, epoxy foam was used to improve mechanical properties of polymer foam. Acid anhydride type hardener reacts with polyol. Using this phenomenon, if blowing agent was added into epoxy resin using acid anhydride type hardener, formation and compressive properties of epoxy foam was studied. Formation of polymer foam was compared with type of blowing agent and concentration of blowing agent via compressive test. As these results, optimized condition of epoxy foam was found and epoxy foam had better compressive property than other polymer foam.

Investigation of Properties of Structural Foam with Different Conformation and via Thermal Aging Condition (구조용 폼의 조성 및 열 노화에 따른 변형특성 관찰)

  • Choe, Jin-Yeong;Kwon, Il-Jun;Park, Sung-Min;Kwon, Dong-Jun
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.122-127
    • /
    • 2018
  • Sandwich composites of carbon fiber reinforced plastic(CFRP) and polymer foam will be used to automobile and aerospace industry according to increasing importance of light weight. In this study, mechanical and heat resistance properties of sandwich composites were compared with type of polymer foam (polyethylene terephthalate(PET), polyvinylchloride(PVC), epoxy and polyurethane). All types of polymer foams were degraded to 30, 60, 120, 180 minutes in $180^{\circ}C$. After heat degradation, the polymer foams were observed using optical microscope and compressive test was performed using universal testing machine(UTM). Epoxy foam had the highest compressive property to 2.6 MPa and after thermal degradation, the mechanical property and structure of foam were less changed than others. Epoxy foam had better mechanical properties than other polymer foams under high temperature. Because the epoxy foam was post cured under high temperature. As the results, Epoxy foam was optimal materials to apply to structures that thermal energy was loaded constantly.