• Title/Summary/Keyword: Polyethylene terephthalate

Search Result 395, Processing Time 0.027 seconds

Evaluation of punching process variables influencing micro via-hole quality of LTCC green sheet (LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가)

  • Baek S. W.;Rhim S. H.;Oh S. I.;Yoon S. M.;Lee S.;Kim S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.260-265
    • /
    • 2004
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet and ceramic sheet and punch-to-die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor k is introduced to express effect of the process variables.

  • PDF

Carbon Nanotube-Copper Hybrid Thin Film on Flexible Substrate fabricated by Ultrasonic Spray Coating and Laser Sintering Process (초음파 스프레이 코팅과 레이저 소결 공정에 의해 유연 기판 표면에 형성된 탄소나노튜브-구리 하이브리드 박막)

  • Park, Chae-Won;Gwon, Jin-Hyeong;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.135-135
    • /
    • 2016
  • Recently flexible electrode materials have attracted attention in various electrical devices. In general, copper(Cu) is widely used electrical conductive material. However, Cu film showed drastically reduction of electrical conductivities under an applied tensile strain of 10%. These poor mechanical characteristics of Cu have difficulty applying in flexible electronic applications. In this study, mechanical flexibilities of Cu thin film were improved by hybridization with carbon nanotubes(CNTs) and laser sintering. First, thin carbon nanotube films were fabricated on a flexible polyethylene terephthalate(PET) substrate by using ultrasonic spray coating of CNT dispersed solution. After then, physically connected CNT-Cu NPs films were formed by utilizing ultrasonic spray coating of Cu nanoparticles dispersed solution on prepared CNT thin films. Finally, CNT-Cu thin films were firmly connected by laser sintering. Therefore, electrical stabilities under mechanical stress of CNT-Cu hybrid thin films were compared with Cu thin films fabricated under same conditions to confirm improvement of mechanical flexibilities by hybridization of CNT and Cu NPs.

  • PDF

Effect of Recycled PET Fiber Reinforced Concrete on Chemical Environment (화학적 환경하에서 재생 PET섬유보강 콘크리트의 성능)

  • Jang, Chang-Il;Lee, Sang-Woo;Choi, Min-Jung;Kim, Joon-Mo;Won, Jong-Pil;Kim, Wan-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.709-712
    • /
    • 2008
  • This study evaluated a mechanical performance of recycled polyethylene terephthalate(PET) fiber reinforced concrete on chemical environment. This study applied to three types of environmental condition including alkaline, salt, $CaCl_2$ in water solution and measured a reduction of mechanical performance of recycled PET fiber reinforced concrete for 30, 60, 90 days under chemical solutions. The mechanical performance of recycled PET fiber reinforced concrete evaluated to carried out a compressive strength test. As the result of test, it was found that the mechanical performance decreased as the exposure time to alkaline environment and indicated a excellence performance under salt, $CaCl_2$ environment conditions.

  • PDF

Synthesis of transparent conductive film containing solution -deposited poly (3, 4-ethylenedioxythiophene) (PEDOT) and water soluble multi-walled carbon nanotubes

  • Tung, Tran Thanh;Kim, Won-Jung;Kim, Tae-Young;Lee, Bong-Seok;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.205-206
    • /
    • 2008
  • The transparent conductive film was prepared by bar coating method of poly (3, 4-ethylenedioxythiophene) (PEDOT) and poly (sodium 4-stylenesulfonate) grafted multi-walled carbon nanotubes (MWNT-PSS) nanocomposites solution on the polyethylene terephthalate (PET) film. In this case, multi-wall carbon nanotubes was treated by chemical methods to obtain water soluble MWNT-PSS and then blending with PEDOT. The non-covalent bonding of polymer to the MWNT surface was confirmed by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA) and Transmission electro microscope (TEM) investigation also showed a polymer-wrapped MWNT structure. Furthermore, the electrical, transmission properties of the transparent conductive film were investigated and compared with control samples are raw PEDOT films.

  • PDF

Continuous Roll-to-Roll(R2R) sputtering system for growing flexible and transparent conducting oxide electrode at room temperature

  • Park, Yong-Seok;Jeong, Jin-A;Park, Ho-Kyun;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1575-1577
    • /
    • 2009
  • We have investigated the characteristics of transparent indium zinc oxide(IZO)/Ag/IZO multilayer electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible device are described. By the continuous R2R sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, we were able to fabricate an IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ${\Omega}$/square, optical transmittance of 87.4 %, and figure of merit value of 42.03 10-3 ${\Omega}$-1. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the RTR sputter grown single ITO electrode, due to the existence a ductile Ag layer between the IZO layers. This indicates that the RTR sputtered IZO-Ag-IZO multilayer is a promising flexible electrode that can substitute for the conventional single ITO electrode grown by bath type sputtering for use in low cost flexible device, due to its low resistance, high transparency, superior flexibility and fast preparation by the R2R process.

  • PDF

Cross-section Morphology and Surface Roughness of an Article Manufactured by Material Extrusion-type 3D Printing according to the Thermal Conductivity of the Material

  • Woo, In Young;Kim, Do Yeon;Kang, Hong Pil;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.46-50
    • /
    • 2020
  • Material extrusion (ME)-type 3D printing is the most popular among the 3D printing processes. In this study, the cross-section morphologies of ME-type 3D printing manufactured specimens were observed with respect to the thermal properties of the material. The cross-section morphology of a specimen is related to the deposition strength, and the outside profile of the cross-section is related to the surface roughness. The filaments used in this study, with different thermal conductivities, were the acrylonitrile-butadiene-styrene (ABS), the high impact polystyrene (HIPS), the glycol-modified polyethylene terephthalate (PETG), and the polylactic acid (PLA). The cross-sections and the surfaces of the 3D manufactured specimens were examined. In ME-type 3D printing, the filaments are extruded through a nozzle and they form a layer. These layers rapidly solidify and as a result, they become a product. The thermal conductivity of the material influences the cooling and solidification of the layers, and subsequently the cross-section morphology and the surface roughness.

Improvement of Transparent Electrodes Based on Carbon Nanotubes Via Corona Treatment on Substrate Surface (기판의 코로나 표면처리에 의한 탄소 나노튜브 투명전극의 물성 향상)

  • Han, Sang-Hoon;Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, we investigate the effects of corona-discharge pre-treatment on the properties of carbon nanotubes (CNTs) which are used as flexible transparent electrodes. The CNTs are deposited on PET (polyethylene terephthalate) substrates using a spray coating method. Prior to the deposition of CNTs, the PET substrates are corona-treated by varying the feeding directions of the PET substrate and the numbers of treatments. The variations in the surface morphologies and roughnesses of the PET substrates due to corona-treatment are characterized via atomic force microscopy (AFM). Dynamic contact angles (DCAs) of the corona-treated PET substrates are measured and analyzed as functions of the treatment conditions. Also, the sheet resistances and visible-range transmittances of the CNTs deposited on PET substrates are measured before and after bending test. The experimental results obtained in this study provide strong evidences that the adhesive forces between CNTs and PET substrates can be substantially enhanced by corona-discharge pretreatment.

Soft Mold Imprinting Fabrication of Anti-reflection Film using Self-Organized Nanostructure Polymer Surfaces Irradiated by Ion Beams (이온빔 처리된 폴리머 표면의 자가나노구조화를 이용한 반사방지 필름 제조용 소프트 몰드 임프린팅 연구)

  • Lee, Seunghun;Byeon, Eun-Yeon;Choi, Juyeon;Jung, Sunghoon;Yu, Byeong-Gil;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.480-485
    • /
    • 2017
  • Soft mold imprinting method that uses nanostructured polymer mold was investigated for anti-reflection film fabrication. The nanostructured soft mold was polyethylene terephthalate(PET) irradiated by oxygen ion beams. The collisional energy transfer between oxygen ion and the polymer surface induced cross-linking and scission reactions, resulting in self-organized nanostructures with regular patterns of the wavenumber of $5{\mu}m^{-1}$. Post processes including ultra-violet curable resin coating and delamination fabricated anti-reflection films. The imprinted resin surface also showed the consistent wavenumber, $5{\mu}m^{-1}$. Pristine PET, oxygen ion beam treated PET, and imprinted replica sample showed total transmittance of 91.04, 93.25, and 93.57-93.88%, respectively.

Effect of PDMS Index Matching Layer on Characteristics of Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO Transparent Electrode (PDMS 굴절 조정층이 Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO 투명전극의 특성에 미치는 영향)

  • Jo, Young-Su;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.408-411
    • /
    • 2018
  • We fabricated highly flexible Mn-doped $SnO_2$ (MTO)/Ag/MTO/polydimethylsiloxane (PDMS)/MTO multilayer transparent conducting films. To reduce refractive-index mismatching of the MTO/Ag/MTO/polyethylene terephthalate (PET), index-matching layers were inserted between the oxide-metal-oxide-structured films and the PET substrate. The PDMS layer was deposited by spin-coating after adjusting the mixing ratio of PDMS and hexane. We investigated the effects of the index-matching layer on the color and reflectance differences with different PDMS dilution ratios. As the dilution ratio increased from 1:100 to 1:130, the color difference increased slightly, while the reflectance difference decreased from 0.62 to 0.32. The MTO/Ag/MTO/PDMS/MTO film showed a transmittance of 87.18~87.68% at 550 nm. The highest value of the Haacke figure of merit was $47.54{\times}10^{-3}{\Omega}^{-1}$ for the dilution ratio of 1:130.

The Effect of Heat Treatment on Shrinkage and Mechanical Properties of PET Filament (섬유공정에서의 습.건열처리가 PET 필라멘트사의 열수축과 인장특성에 미치는 영향)

  • 김경렬;김승진;김태훈;김영진;이응곤;송재수
    • Textile Coloration and Finishing
    • /
    • v.10 no.3
    • /
    • pp.10-19
    • /
    • 1998
  • This paper investigates the change of mechanical properties and thermal shrinkage in commercial multi-filament PET(polyethylene terephthalate) , namely, regular yarn, POY, DTY and composite yarn. To determine changing the effects of processing steps, these were examined at three steps process simulation conditions. The first step is sizing simulation$(S-1\;step\;:\;130^\circ{C}\times2\;min$., hot air treatment under 0.1 gf/d load), the second step is scouring simulation$(S-2\;step\;:\;100^\circ{C}\times20\;min$., boiling water treatment under free tension)and final step is setting simulation$(S-3\;step\;:\;180^\circ{C}\times2\;min$., hot air treatment under free tension). Regular yarn in multi-step treatment showed higher shrinkage at S-3 step and DTY showed higher in at S-1 step. While POY was relaxed at S-1 step, composite yarn showed different shrinkage properties depending on composite yarn type. Mechanical properties showed good relationship with shrinkage : high shrinkage makes initial modulus decrease and bleating strain increase. It also makes decreasing yield strain and yield stress decrease.

  • PDF