• Title/Summary/Keyword: Polyether ether ketone

Search Result 28, Processing Time 0.022 seconds

Optimization of Multiple Quality Characteristics for Polyether Ether Ketone Injection Molding Process

  • Kuo Chung-Feng Jeffrey;Su Te-Li
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.404-413
    • /
    • 2006
  • This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws' outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the $L_{18}(2^1{\times}3^7)$ orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.

Preparation and Characterization of TPA Captured CL-SPEEK Polymer Composite Membranes for Water Electrolysis (수전해용 술폰화 폴리에테르 에테르 케톤과 고정된 TPA 고분자 복합막의 제조 및 특성)

  • CHA, JINSAN;YOON, YOUNGYO;KIM, MINJIN;KIM, BOYOUNG;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Polyether ether ketone (PEEK) composite including tungstophosphoric acid(TPA) membranes have been intensively investigated for polymer electrolyte membrane water electrolysis (PEMWE) and thus covalently linked sulfonated polyether ether ketone (CL-SPEEK) with captured TPA composite membranes were prepared and characterized. Sulfonated polyether ether ketone (SPEEK) was prepared in sulfonation of PEEK and was cross-linked with 1,4 diiodobutane. The carbonyl group of SPEEK was reduced with $NaBH_4$ and 3-isocyanatepropyltriethoxysilane (ICPTES) was added. The TPA captured composite was prepared in reaction of TPA with 3-mercaptopropyltrime thoxysilane (MPTMS). The polymer composite membranes showed better thermostability and electrochemical properties than SPEEK. The membranes were prepared by sol-gel casting method. The polymer composite membrane featured 0.1285 S/cm of proton conductivity at $80^{\circ}C$ and outstanding durability.

Development and Charateriztion of Molybdophosphoric Acid Bonded Polyether Ether Ketone Polymer Composite Membrane for Water Electrolysis (수전해용 MoPA 결합된 폴리에테르 에테르 케톤 고분자 복합막의 개발 및 특성)

  • KIM, MIN JIN;KIM, BO YOUNG;MOON, SANG-BONG;CHUNG, JANG HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.338-344
    • /
    • 2017
  • Polyoxometal molybdophosphoric acid (MoPA) bonded polyether ether ketone (PEEK) composite membrane for water electrolysis has been investigated. The composited membrane, covalently cross linked (CL) sulfonated polyether ether ketone (SPEEK) with a bonded MoPA, was prepared in sulfonation of PEEK, cross linkage reaction with 1,4-diiodobutane, and addition with MoPA. PEEK was covalently cross-linked with 1,4-diiodobutane to improve mechanical strength and was added with MoPA to increase proton conductivity. MoPA should be fixed to back bone of SPEEK to prevent bleeding out. Therefore, the carbonyl group of SPEEK was reduced with NaBH4 and 3-isocyanatepropyltriethoxysilane (ICPTES) was added. The MoPA bonded composite was produced in the reaction of MoPA with 3-mercaptopropyltrimethoxvsilane (MPTMS). In conclusion, MoPA bonded CL-SPEEK composite membrane featured 0.129 S/cm of proton conductivity at $80^{\circ}C$, and 2,156 hours of chemical stability in Fenton test. These properties are better than those of membranes of other SPEEK system.

Preparation and Characterization of SPEEK/Cellulose Polymer Composite Membranes for Water Electrolysis (수전해용 술폰화 폴리에테르 에테르 케톤과 셀룰로오스 고분자 복합막의 제조 및 특성)

  • SONG, YURI;CHA, JINSAN;YOON, YOUNGYO;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.478-484
    • /
    • 2016
  • Polyether ether ketone (PEEK) composite membranes have been intensively investigated for polymer electrolyte membrane water electrolysis (PEMWE). Covalently linked (CL) sulfonated polyether ether ketone (SPEEK) and cellulose polymer composite membranes were prepared and characterized. Polyether ether ketone (PEEK) and cellulose were sulfonated and then were covalently linked by 1,4-diiodobutane to produce covalently linked SPEEK and cellulose polymer composite membranes. The composite membranes showed better thermostability and electrochemical properties than SPEEK. The membranes were prepared by sol-gel casting method. CL-SPEEK/Cellulose composite membrane featured 0.2453 S/cm of proton conductivity at $80^{\circ}C$ which was better than that of Nafion.

Hypochlorite Production by Using SPEEK/APSf and SPEEK/APEI Bipolar Membranes Modified by the Direct Fluorination (직접 불소화에 의해 표면 개질된 SPEEK/APSf, SPEEK/APEI 바이폴라막을 이용한 차아염소산나트륨 생성)

  • Kim, Ka young;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.447-455
    • /
    • 2015
  • In this study, Polysulfone (PSf) and polyetherimide (PEI) as the anion exchange polymers were aminated in the different ratio whereas the polyether ether ketone (PEEK) as the cation exchange polymer was sulfonated. The bipolar membranes of SPEEK (sulfonated PEEK)/APSf (aminated PSf) and SPEEK/APEI (aminated PEI) were prepared by the double-casting method. The surfaces of bipolar membranes were fluorinated in accordance with the amination ratio and applied to produce the hypochlorite. As the amination increased, the hypochlorite concentration is also increased. Typically, for SPEEK/APSf 3 : 1 membrane, the produced hypochlorite concentration was 61.0 ppm and its durability was 220 min for the non-fluorinated membrane while for the fluorinated membrane, the concentration of 58.6 ppm and its durability lasted 570 min. Also for SPEEK/APEI 3 : 1 membrane, the hypochlorite concentrations of 60.1 ppm and 58.3 ppm for before- and after-fluorination, respectively were observed whereas the durability was remarkably developed from 150 min to 440 min. Therefore, the surface fluorination takes an important role for the development of the membrane durability.

Polyether Ether Ketone Membrane with Excellent Pure Permeability Using Thermally Induced Phase Separation Method and Morphology Analysis with Characterization (열유도 상분리법을 이용한 순수 투과 성능이 우수한 폴리에테르 에테르 케톤 분리막 제조와 모폴로지 분석 및 특성평가)

  • Kwang Seop Im;Seong Jun Jang;Chae Hong Lim;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.214-221
    • /
    • 2024
  • Polyether ketone (PEEK) has been widely used in membranes because of its excellent thermal stability, chemical resistance, and significant mechanical strength. However, the melting temperature is very high, making it difficult to find suitable solvents. Therefore, in this study, PEEK and benzophenone (DPK) were used as diluents to prepare a membrane with excellent mechanical strength and chemical stability using the thermally induced phase separation (TIPS) method to compensate for the shortcomings of PEEK membrane preparation and achieving the highest performances. The optimal membrane manufacturing conditions were confirmed through the crystallization temperature and cloud point according to the polymer content through the phase diagram. Subsequently, the morphological changes of the membrane, influenced by the polymer and diluent content, were confirmed through scanning electron microscopy (SEM). Additionally, the membrane thickness tended to increase with higher polymer content. Tensile strength and DI-water permeability tests were conducted to confirm the mechanical strength and permeability of the membrane. Through the previous characteristic evaluation, it was confirmed that the membrane using PEEK had excellent mechanical strength and permeability.

Synthesis and Characterization of Covalently Cross-Linked SPEEK/Cs-substituted MoSiA/Ceria Composite Membranes with MoSiA for Water Electrolysis (MoSiA를 이용한 수전해용 공유가교 SPEEK/Cs-MoSiA/Ceria복합막의 제조 및 성능 연구)

  • SEO, HYUN;SONG, YU-RI;OH, YUN-SUN;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.524-531
    • /
    • 2015
  • To improve the electrochemical and mechanical characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The SPEEK organic-inorganic blended composite membranes were prepared by sol-gel casting method. It was loaded with the highly dispersed ceria and cesium-substituted molybdosilicic acid (Cs-MoSiA) and 1,4-diiodobutane which was cross-linking agent contents of $10{\mu}L$. Cs-MoSiA was added to increase proton conductivity. Ceria ($CeO_2$) was used as a free radical scavenger which degrade the membrane in polymer electrolyte membrane water elctrolysis (PEMWE). In conclusion, CL-SPEEK/Cs-MoSiA/Ceria 1% composite membrane showed high proton conductivity 0.2104 S/cm at $25^{\circ}C$ which was better than Nafion 117 membrane.

Study of Characteristic of Covalent Cross-linked SPEEK/Silane 4wt%/Cs-substituted MoPA/Ceria hybrid Membrane for Water Electrolysis (Ceria 첨가에 따른 수전해용 공유가교 CL-SPEEK/Silane 4wt%/Cs-MoPA/Ceria 복합막의 특성 연구)

  • Oh, Seunghee;Park, Daeyong;Hwang, Sungha;Yoon, Daejin;Oh, Yunsun;Moon, Sangbong;Chung, Janghoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.561-569
    • /
    • 2014
  • Ceria ($CeO_2$) was used to increase the durability of the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance. The sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) to improve electrochemical characteristics. After sulfonation reaction, the organic-inorganic blended composite membranes were prepared by means of sol-gel casting method with loading the highly dispersed $CeO_2$ and Cs-substituted molybdophosphoric acid (Cs-MoPA) with cross-linking agent (tetrapropyl orthosilicate). Consequently, the composite membrane CL-SPEEK/Silane 4wt%/Cs-MoPA/Ceria(1%) showed the improved characteristics such as 82% of water content, 0.11136 S/cm of proton conductivity at $80^{\circ}C$, 55.50 MPa of tensile strength and 4.37% of breeding out of MoPA.

Study of Synthesis and Performance of Covalently Cross-Linked SPEEK/Cs-TSiA Composite Membranes with Ceria Contents for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TSiA 막의 Ceria의 함량에 따른 제조 및 성능 연구)

  • YOON, DAE-JIN;OH, YUN-SUN;SEO, HYEON;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • The engineering plastic of sulfonated polyether ether ketone (SPEEK) as a polymer matrix has been developed in this lab to replace Nafion, solid polymer electrolytes of perfluorosulfonic acid membrane which has several flaws such as high cost, and limited operational temperature above $80^{\circ}C$. The SPEEK was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstosilicic acid (Cs-TSiA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TSiA/ceria 1% membrane showed the optimum results such as 0.1882 S/cm of proton conductivity at $80^{\circ}C$, and 99.61 MPa of tensile strength which were better than Nafion 117 membrane.