DOI QR코드

DOI QR Code

Polyether Ether Ketone Membrane with Excellent Pure Permeability Using Thermally Induced Phase Separation Method and Morphology Analysis with Characterization

열유도 상분리법을 이용한 순수 투과 성능이 우수한 폴리에테르 에테르 케톤 분리막 제조와 모폴로지 분석 및 특성평가

  • Kwang Seop Im (GNU Intelligent Advanced Materials Center for Research Pioneers) ;
  • Seong Jun Jang (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Chae Hong Lim (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Sang Yong Nam (GNU Intelligent Advanced Materials Center for Research Pioneers)
  • 임광섭 (경상국립대학교 나노신소재융합공학과) ;
  • 장성준 (경상국립대학교 나노신소재공학부 고분자공학과) ;
  • 임채홍 (경상국립대학교 나노신소재공학부 고분자공학과) ;
  • 남상용 (경상국립대학교 나노신소재융합공학과)
  • Received : 2024.03.27
  • Accepted : 2024.05.03
  • Published : 2024.06.10

Abstract

Polyether ketone (PEEK) has been widely used in membranes because of its excellent thermal stability, chemical resistance, and significant mechanical strength. However, the melting temperature is very high, making it difficult to find suitable solvents. Therefore, in this study, PEEK and benzophenone (DPK) were used as diluents to prepare a membrane with excellent mechanical strength and chemical stability using the thermally induced phase separation (TIPS) method to compensate for the shortcomings of PEEK membrane preparation and achieving the highest performances. The optimal membrane manufacturing conditions were confirmed through the crystallization temperature and cloud point according to the polymer content through the phase diagram. Subsequently, the morphological changes of the membrane, influenced by the polymer and diluent content, were confirmed through scanning electron microscopy (SEM). Additionally, the membrane thickness tended to increase with higher polymer content. Tensile strength and DI-water permeability tests were conducted to confirm the mechanical strength and permeability of the membrane. Through the previous characteristic evaluation, it was confirmed that the membrane using PEEK had excellent mechanical strength and permeability.

PEEK는 우수한 열안정성, 내화학성 및 높은 기계적 강도를 가져 분리막에서 많이 이용된다. 하지만 높은 용융온도로 인해 성형이 어렵고 적합한 용매를 찾기 어렵다는 단점을 지닌다. 따라서 본 연구에서는 기계적 강도와 화학적 안정성이 우수한 분리막을 제조하기 위하여 폴리에테르에테르케톤(polyether ether ketone, PEEK)과 벤조페논(diphenyl ketone, DPK)을 희석제로 사용하여 분리막을 제조하였다. 분리막은 PEEK의 단점을 보완하기 위해 열 유도 상분리법(thermally induced phase separation, TIPS)을 이용하여 분리막을 제조하였으며 이후 특성평가를 진행하였다. 먼저 분리막 제조 조건을 알아보기 위하여 고분자 함량에 따른 결정화 온도, cloud point를 이용하여 상평형도 작도를 하여 최적의 분리막 제조 조건을 확인하였다. 이후 전자주사현미경(scanning electron microscopy, SEM)을 통하여 고분자와 희석제의 함량에 따른 분리막의 모폴로지 변화를 확인하였고, 고분자 함량이 증가할수록 분리막의 두께가 증가하는 경향을 확인하였다. 분리막으로서 성능을 평가하기 위해 인장 강도와 DI-water 투과도 테스트를 진행하였다. 앞선 특성 평가를 통해 PEEK를 사용한 분리막의 우수한 기계적 강도와 투과성능을 확인하였다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과 입니다. 또한, 이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No.2020R1A6A03038697)

References

  1. K. S. Im, T. Y. Son, K, Kim, J. F. Kim, and S. Y. Nam, Research and development trend of electrolyte membrane applicable to water electrolysis system, Appl. Chem. Eng., 30, 389-398 (2019). 
  2. D. J. Kim, D. Y. Oh, M. K. Jeong, and S. Y. Nam, Recent trends in composite materials for aircrafts, Appl. Chem. Eng., 27, 252-258 (2016). 
  3. D. J Kim, C. H. Park, and S. Y. Nam, Characterization of a soluble poly (ether ether ketone) anion exchange membrane for fuel cell application, Int. J. Hydrogen Energy, 41, 7649-7658 (2016). 
  4. T. Y. Son, D. J. Kim, V. Vijayakumar, K. Kim, D. S. Kim, and S. Y. Nam, Anion exchange membrane using poly (ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC), J. Ind. Eng. Chem., 89, 175-182 (2020). 
  5. B. Lakshmanan, W. Huang, D. Olmeijer, and J. W, Weidner, Polyether ether ketone membranes for elevated temperature PEMFCs, ESL, 6, A282 (2003). 
  6. B. da Silva, J, L. Peeva, and A.Livingston, Negligible ageing in poly (ether-ether-ketone) membranes widens application range for solvent processing, J. Membr. Sci., 525, 48-56 (2017). 
  7. M. K. Jeong and S. Y. Nam., Preparation and characterization of organic solvent-resistant polybenzimidazole membranes, Appl. Chem. Eng., 28, 420-426 (2017). 
  8. S. Woo, J. Kim, J. Lee, and J. Bang, Fabrication of block copolymer membranes via SNIPS process, Korean J. Chem. Eng., 55, 214-219 (2017). 
  9. J. T. Jung, J. F. Kim, H. H. Wang, E. Di Nicolo, E. Drioli, and Y. M. Lee, Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), J. Membr. Sci., 514, 250-263 (2016). 
  10. J. W. Lee and S. Y. Nam, Effect of heat capacity of coagulant on morphology of PVDF-silica mixture through tips process for the application of porous membrane, Membr. J., 27, 458-467 (2017). 
  11. N. Cao, Y. Sun, J. Wang, H. Zhang, J. Pang, and Z Jiang, Strong acid-and solvent-resistant polyether ether ketone separation membranes with adjustable pores, J. Chem. Eng., 386, 124086 (2020). 
  12. F. Yang, S. Li, H. Qi, W. Sun, J. Li, M. Zhang, Z. Chen, J. Pang, and Z. Jiang, Preparation and properties of PEEK-g-PNIPAm separation membranes with thermo-responsiveness for emulsion and organic liquid separation, J. Membr. Sci., 693, 122322 (2024). 
  13. W. Ma, Z. Zhou, N. Ismail, E. Tocci, A. Figoli, M. Khayet, T. Matsuura, Z. Cui, and N. Tavajohi, Membrane formation by thermally induced phase separation: Materials, involved parameters, modeling, current efforts and future directions, J. Membr. Sci., 669, 121303 (2023). 
  14. S. Lee and S. S Kim, Structural changes of PVDF membranes by phase separation control, Korean J. Chem. Eng., 54, 57-63 (2016). 
  15. D. Li, W. B. Krantz, A. R. Greenberg, and R. L. Sani, Membrane formation via thermally induced phase separation (TIPS): Model development and validation, J. Membr. Sci., 279, 50-60 (2006). 
  16. K. S. Im, J. W. Lee, T. Y. Son, V. Vijayakumar, J. Y. Jang, and S. Y. Nam, Evaluation of antifouling and chemical resistance of flower membrane prepared using thermally induced phase separation (TIPS) process, Desalin. Water Treat., 188, 1-9 (2020). 
  17. J. Liu, Y. Mo, S. Wang, S. Ren, D. Han, M. Xiao, L. Sun, and Y. Meng, Ultrastrong and heat-resistant poly (ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries, ACS Appl. Energy Mater., 2, 3886-3895 (2019). 
  18. L. Li, R. Xiong, X. Wang, M. Zhou, S. Sun, G. Shen, L. Song, Y. Zhang, and H. Zhou, Lithiated poly (ether ether ketone) separators with excellent thermal stability and electrolyte wettability for lithium-ion battery, J. Mater. Sci., 57, 18980-18992 (2022). 
  19. H. Matsuyama, B. Stephane, and R. L. Douglas, Formation of anisotropic membranes via thermally induced phase separation, Polymer, 40, 2289-2301 (1999). 
  20. N. Ismail, A. Venault, J. P. Mikkola, D. Bouyer, E. Drioli, and N. T. H. Kiadeh, Investigating the potential of membranes formed by the vapor induced phase separation process, J. Membr. Sci., 597, 117601 (2020). 
  21. G. Bagnato, A. Figoli, R. Garbe, F. Russo, F. Galiano, and A. Sanna, Development of Ru-PEEK-WC catalytic membrane using a more sustainable solvent for stable hydrogenation reactions, Fuel Process. Technol., 216, 106766 (2021). 
  22. V. P. Khare, A. R. Greenberg, and W. B. Krantz., Vapor-induced phase separation-Effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling, J. Membr. Sci., 258, 140-156 (2005). 
  23. S. L. Aristizabal, L. Upadhyaya, G. Falca, A. Y. Gebreyohannes, M. O. Aijaz, M. R. Karim, and S. P. Nunes, Acid-free fabrication of polyaryletherketone membranes, J. Membr. Sci., 660, 120798 (2022). 
  24. M. Dalwani, G. Bargeman, S. S. Hosseiny, M. Boerrigter, M. Wessling, and N. E. Benes, Sulfonated poly (ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media, J. Membr. Sci., 381, 81-89 (2011). 
  25. A. Venault, Y. Chang, D. M. Wang, and D. Bouyer, A review on polymeric membranes and hydrogels prepared by vapor-induced phase separation process, Polym. Rev., 53, 568-626 (2013). 
  26. S. Verma, N. Sharma, S. Kango, and S. Sharma, Developments of PEEK (polyether ether ketone) as a biomedical material: A focused review, Eur. Polym. J., 147, 110295 (2021). 
  27. H. Abid and M. Javaid, Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: An overview, Clin. Epidemiol. Glob. Health, 7, 571-577 (2019). 
  28. B. Pang, Q. Li, Y. Tang, B. Zhou, T. Liu, Y. Lin, and X. Wang, Fabrication of cellulose acetate ultrafiltration membrane with diphenyl ketone via thermally induced phase separation, J. Appl. Polym., 132, 41 (2015). 
  29. H. Ding, Q. Zhang, Y. Tian, Y. Shi, and B. Liu, Preparation of porous structure in the system of PEEK/PPS/diphenyl ketone via thermally induced phase separation, J. Appl. Polym., 104, 1523-1530 (2007). 
  30. S. J. Kim, J. W. Lee, and S. Y. Nam, Study of thermally induced phase separation of polyvinylidene fluoride-silica mixture for the preparation of porous polymeric membrane, Membr. J., 27, 189-198 (2017). 
  31. Y. Takahashi, Y. Isono, I. Noda, and M. Nagasawa, Zero-shear viscosity of linear polymer solutions over a wide range of concentration, Macromolecules, 18, 1002-1008 (1985). 
  32. S. M. Han, K. S. Im, H. N. Jeong, D. H. Kim, and S. Y. Nam, Preparation and evaluation of hybrid porous membrane for the application of alkaline water electrolysis, Membr. J., 31, 443-455 (2021). 
  33. K. S. Im, J. W. Lee, J. Y. Jang, and S. Y. Nam, Hydrophilic coating and characterization of PVDF membrane with flower type cross-section made from thermally induced phase separation, Membr. J., 29, 362-376 (2019). 
  34. Y. H. Park and S. Y. Nam, Characterization of water treatment membrane using various hydrophilic coating materials, Membr. J., 27, 60-67 (2017). 
  35. F. Yang, C. Liu, F. Yang, M. Xiang, T. Wu, and Q. Fu, Effects of diluent content on the crystallization behavior and morphology of polyethylene membrane fabricated via thermally induced phase separation process, Polymer, 255, 125104 (2022). 
  36. J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, and Y. M. Lee, Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods, J. Membr. Sci., 509, 94-104 (2016). 
  37. S. J. Kim, J. W. Lee, and S. Y. Nam. Characterization of PVDF-DBP materials for thermally induced phase separation, Membr. J., 26, 449-457 (2016). 
  38. Q. Zhao, L. Wang, J. Liu, G. Xu, H. Jiang, X. Jie, and Y. Cao, Preparation of nano-porous poly (ether ether ketone) hollow fiber membrane and its performance for desalination in vacuum membrane distillation, Desalination, 551, 116417 (2023). 
  39. Q. Zhou, Z. Wang, H. Shen, Z. Zhu, L. Liu, L. Yang, and L. Cheng, Morphology and performance of PVDF TIPS microfiltration hollow fiber membranes prepared from PVDF/DBP/DOP systems for industrial application, J. Chem. Technol. Biotechnol., 91, 1697 (2015).