DOI QR코드

DOI QR Code

Extraction of Nature Pigment with Antioxidant Properties from Sprout Barley - Optimization Using CCD-RSM

새싹보리로부터 항산화기능성을 갖는 천연색소의 추출 - CCD-RSM을 이용한 최적화

  • Dong Hwan Kim (Department of Chemical Engineering, Dankook University) ;
  • Seung Bum Lee (Department of Chemical Engineering, Dankook University)
  • 김동환 (단국대학교 화학공학과) ;
  • 이승범 (단국대학교 화학공학과)
  • Received : 2024.04.29
  • Accepted : 2024.05.14
  • Published : 2024.06.10

Abstract

The use of low-toxic, hypoallergenic, and environmentally friendly natural pigments has increased. With growing interest in health, research on natural extracts containing beneficial substances for the human body is actively underway. In this study, natural pigments were extracted from sprout barley using a solvent extraction method and CCD-RSM was used to optimize the extraction process. The experiment's independent variables included extraction temperature, alcohol/ultra-pure volume ratio, and extraction time. The response variables were set to achieve a target chromaticity (L = 45, a = -35, b = 45), and to maximize DPPH radical scavenging activity evaluating the antioxidant capacity. The statistical significance of the main effect, interaction effect, and effect on the response value was evaluated and analyzed through the F and P values for the regression equation variables calculated using RSM optimization. Additionally, the reliability of the experiment was also confirmed through the P values of the probability plot graph. The extraction conditions for optimizing the four reaction values are 76.1 vol.% alcohol/ultra pure water volume ratio, an extraction temperature of 52.9 ℃ , and an extraction time of 49.6 min. Under these conditions, the theoretical values of the reaction values are L = 45.4, a = -36.8, and b = 45.0 DPPH radical scavenging activity = 30.9%. When the actual experiment was conducted under these optimal extraction conditions and analyzed, the measured values were L = 46.2, a = -36.1, and b = 48.2, and antioxidant capacity = 31.1% with an average error rate of 2.9%.

독성이 없고 자극이 적은 환경친화적인 천연색소 사용이 증가하고, 건강에 관심을 가지는 사람이 많아짐에 따라 인체에 유익한 물질을 함유한 천연 추출물에 대한 연구가 활발히 진행 중이다. 이에 따라 본 연구에서는 용매추출법을 이용하여 새싹보리로부터 천연 색소를 추출하고 추출공정의 최적화를 위해 CCD-RSM을 이용하였다. 실험의 독립변수는 추출온도, 주정/초순수 부피비, 추출시간으로 설정하고 반응치는 목표하는 색 좌표(L = 45, a = -35, b = 45)와 항산화능을 평가하는 DPPH 라디칼 소거능을 최대치로 설정하였다. RSM 최적화를 통해 산출된 회귀방정식 변수들에 대한 F value와 P value을 통해 주효과도와 교호효과도의 통계적 유의미 여부와 반응치에 대한 영향성을 평가 및 분석하였으며, 각 회귀방정식과 확률도 그래프의 P value를 통해 실험의 신뢰성을 확인하였다. 반응치 4개를 최적화시키는 추출 조건은 추출온도 52.9 ℃, 주정/초순수 부피비 76.1 vol.%과 추출시간 49.6 min이며 이 때, 반응치의 이론값은 L = 45.4, a = -36.8, b = 45.0 항산화능 = 30.9%이다. 최적의 추출 조건으로 실제 실험을 진행하여 분석한 결과 색 좌표 L = 46.2, a = -36.1, b = 48.3, 그리고 항산화능 = 31.1%로 평균 오차율 2.9%로 측정되었다.

Keywords

References

  1. C. S, Eun, E. Y. Hwang, S. O. Lee, S. A. Yang, and M. H. Yu, Anti-oxidant and anti-inflammatory activities of barley sprout extract, J. Life Sci., 26, 537-544 (2016). https://doi.org/10.5352/JLS.2016.26.5.537
  2. S. O. Lee, H. J. Lee, M. H. Yu, H. G. Im, and I. S. Lee, Total poly-phenol contents and antioxidant activities of methanol extract from vegetables produced in Ullung Island, Korean J. Food Sci. Technol., 37, 233-240 (2005).
  3. I. K. Hong, H. Jeon, and S. B. Lee, Extraction of natural dye from gardenia and chromaticity analysis accroding to chi parameter, J. Ind. Eng. Chem., 24, 326-332 (2015). https://doi.org/10.1016/j.jiec.2014.10.004
  4. M. M. Kamel, R. M. El-Shishtawy, B. M. Yussef, and H. Mashaly, Ultrasonic assisted dyeing III. Dyeing of wool with lac as a natural dye, Dyes Pigm., 65, 103-110 (2005). https://doi.org/10.1016/j.dyepig.2004.06.003
  5. I. S. Kim, S. H. ,Han and K. W. Han, Study on the chemical change of amino acid and vitamin of rapeseed during germination, J. Kor. Soc. Food Sci. Nutr., 26, 1058-1062 (1997).
  6. Y. M Yu, W. C. Chang, C. T. Chang, and C. L. Hseieh, Effects of young barley leaf extract and antioxidative vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes, Diabetes Metab., 28, 107-114 (2002).
  7. J. H. No, H, N. Yoon, S. R. Park, S. J. Yoo, and M. S. Shin, Color Stability of Chlorophyll in Young Barley Leaf, J. East Asian Soc. Diet. Life, 26, 314-324 (2016). https://doi.org/10.17495/easdl.2016.8.26.4.314
  8. M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76, 965-977 (2008). https://doi.org/10.1016/j.talanta.2008.05.019
  9. T. Belwal, P. Dhyani, I. D. Bhatt, R. S. Rawal, and V. Pande, Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM), Food Chem., 207, 115-124 (2016). https://doi.org/10.1016/j.foodchem.2016.03.081
  10. D. Bas and D. Boyaci, Modeling and optimization I: Usability of response resurface methodology, J. Food Eng., 78, 836-845 (2007). https://doi.org/10.1016/j.jfoodeng.2005.11.024
  11. A. A. D'Archivio and M. A. Maggi, Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids, Food Chem., 219, 414-418 (2017). https://doi.org/10.1016/j.foodchem.2016.09.167
  12. S. B. Lee, W. J. Lee, and I. K. Hong, Application of response surface methodology for optimization of nature dye extraction process, Appl. Chem. Eng., 29, 283-288 (2018). https://doi.org/10.14478/ACE.2018.1003
  13. M. del M. Perez, R. Ghinea, M. J. Rivas, A. Yebra, A. M. Ionescu, R. D. Paravina, and L. J. Herrera, Development of a customized whiteness index for dentistry based on CIE Lab color space, Dent. Mater., 32, 461-467 (2016). https://doi.org/10.1016/j.dental.2015.12.008
  14. Y. Lu and L. Y. Foo, Antioxidant activities of polyphenols from sage (Salvia officinalis), Food Chem., 75, 197-202 (2001). https://doi.org/10.1016/S0308-8146(01)00198-4
  15. M. Y. Noordin, V. C. Venkatesh, S. Sharif, S. Elting, and A. Abdullah, Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel, J. Mater. Process. Technol., 145, 46-58 (2004). https://doi.org/10.1016/S0924-0136(03)00861-6
  16. J. Cao, Y. Wu, Y. Jin, P. Yilihan, and W. Huang, Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41, J. Taiwan Inst. Chem. Eng., 45, 860-868 (2014). https://doi.org/10.1016/j.jtice.2013.09.011
  17. H. J. Yoon, I. T. Ham, J. S. Kim, and J. D. Choi, Optimization of the manufacturing process for boiled-dried anchovy using response surface methodology (RSM)., J. Kor. Soc. Fish Mar. Edu., 29, 1984-1993 (2017).
  18. M. O. Saeed, K. Azizli, M. H. Isa, and M. J.K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8, 7-16 (2015).
  19. M. Tripathi, A. Bhatnagar, N. M. Mubarak, J. N. Sahu, and P. Ganesan, RSM optimization of microwave pyrolysis parameters to produce OPS char with high yield and large BET surface area, Fuel, 277, 118-184 (2020).
  20. H. J. Kim and W. B. Yoon, Determination of optimum processing conditions for extruded rice cake using response surface methodology, Korean J. Food Preserv., 27, 601-616 (2020). https://doi.org/10.11002/kjfp.2020.27.5.601