• Title/Summary/Keyword: Polyester aluminum bag

Search Result 5, Processing Time 0.018 seconds

A Preliminary Study on Polyester Aluminum Bag as the Possible Substitute for Tedlar Bag Sampler in RSC Analysis (테들러 백 샘플러의 대체 소재로서 폴리에스터 알루미늄 백에 대한 예비연구: 환원황화합물을 중심으로)

  • Kim, Ki-Hyun;Jo, Sang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.454-459
    • /
    • 2011
  • In this study, the recovery rate of Tedlar bag (T) sampler was investigated in comparison to polyester aluminum bag (P) sampler. To derive the comparative data sets for the relative performance between different samplers, a series of calibration experiments were performed by using 1 ppb standard of four offensive reduced sulfur compounds (RSC) odorants ($H_2S$, $CH_3SH$, DMS, and DMDS) along with $SO_2$ and $CS_2$. All the analysis was made by gas chromatography/pulsed flame photometric detector (GC/PFPD) combined with air server/thermal desorber (AS/TD). The measurement data were obtained by loading gaseous standards (1 ppb) at 3 injection volumes (250, 500 and 1,000 mL) at three intervals (0, 24 and 72 hrs). The recovery rates (RR) of P sampler were computed against the slope values of T sampler. According to our analysis, P sampler exhibits slightly enhanced loss relative to T, especially with light RSCs ($H_2S$ and $CH_3SH$). At day 0, RR for the two were 88 and 85%, respectively. Such reduction proceeded rather rapidly in the case of $H_2S$ through time. However, P sampler was more stable to store $SO_2$ unlike others. Despite slightly reduced recovery, P sampler appears as a good replacement of T sampler.

Reduced sulfur gas loss in the bag sampling procedure - Comparison by calibration slope values (악취황 성분의 채취와 샘플백 내부의 시료 유실율 비교: 검량선의 기울기를 이용한 평가)

  • Kim, K.H.;Choi, Y.J.;Ahn, J.W.
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.338-343
    • /
    • 2005
  • In this work, sample loss of reduced sulfur compounds (RSC) was investigated with respect to bag sampling techniques. For comparison purpose, calibration slopes were obtained by analyzing standards prepared by 'within syringe dilution' (WSD) method against those made either by 'Tedlar bag dilution' (TBD) or by 'polyester aluminum bag dilution' (PBD) method. The results indicated that the recovery rate of TBD showed the mean values of about 87%, while those of PBD about 77%. Despite the fact that sample loss is inevitable, precise sampling of reduced sulfur compounds may still be possible, if one acknowledges and be prepared for such loss rates of bag sampling methods.

Comparison of Two Experimental Approaches to Test Temporal Storability of Reduced Sulfur Compounds in Whole Sampling Method (환원황화합물에 대한 용기채취법의 비교 연구)

  • Jo, Sang-Hee;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.306-315
    • /
    • 2012
  • In this study, storage stability of reduced sulfur compounds ($H_2S$, $CH_3SH$, DMS, $CS_2$, and DMDS) and $SO_2$ in sampling bags was investigated in terms of two contrasting storage approaches between forward (F) and reverse (R) direction. The samples for the F method were prepared at the same time and analyzed sequentially through time. In contrast, those of reverse (R) method were prepared sequentially in advance and analyzed all at once upon the preparation of the last sample. In addition, relative performance between two different bag materials (PVF and PEA) was also assessed by using 100 ppb standard. The response factors (RF) of gaseous RSC samples were determined by gas chromatography/pulsed flame photometric detector (GC/PFPD) combined with air server (AS)/thermal desorber (TD) system at storage intervals of 0, 1, and 3 days. There is no statistical difference in all RSCs between two storage methods. However, the results of relative recovery indicated 2.58~12.8% differences in compound type between the two storage methods. Moreover, loss rates and storage stability of $H_2S$ and $SO_2$ were considerably affected by bag materials than any other variables. Therefore, some considerations about storage methods (or bag material types) for sulfur compounds are needed if stored by sampling bag method.

Comparison of sample storage containers for the analysis of volatile organic compounds (VOC) (휘발성유기물(VOC) 분석을 위한 시료보관 용기의 비교)

  • Kim, Seokyung;Kim, Dalho
    • Analytical Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.116-123
    • /
    • 2022
  • Polymer bags, metallic canisters, and glass bottles have been used as containers for analyzing the volatile organic compounds (VOCs) in air. In this study, various sampling containers were compared to investigate the short-term stability of VOCs, that is, from the time they are sampled to the time they are analyzed. Polyvinyl fluoride (PVF), polypropylene (PP), polyester aluminum (PE-Al) bags, canisters, and glass bottles were used as sample containers. A 100 nmol/mol standard gas mixture of benzene, toluene, ethylbenzene, m-xylene, styrene, and o-xylene was used for the VOC comparison. Changes in the concentrations of samples stored for 10~20 day in each container were measured using a thermal desorption-gas chromatograph-flame ionization detector (TD-GC-FID). As a result, VOCs stored in a canister and two kinds of amber glass bottles have shown immaterial decreases in concentration in one week, and more than 80 % of the initial concentration was maintained for two weeks. In the case of polymer bags, the concentration of all VOCs, except benzene and toluene, were remarkably decreased below 70% of the initial concentration in one day. Particularly, ethylbenzene, xylene, and styrene have shown dramatic decreases in concentration below 30 % of the initial concentration in all polymer bags in one day.

Test Method Using VOC Analyzer to Measure VOC Emission of Paints for Wood-based Panel (VOC Analyzer를 이용한 목재용 도료의 휘발성유기화합물의 간이측정)

  • Eom, Young Geun;Kim, Ki-Wook;An, Jae-Yun;Kim, Hyun-Joong;Moon, Suck-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.65-72
    • /
    • 2007
  • The VOC (volatile organic compound) analyzer is devised to measure the four main aromatic hydrocarbon gases: toluene, ethylbenzene, xylene and styfene. It is not affected by ambient temperature and humidity. In addition, standby and measuring time of VOC Analyzer is a short as below 30 min and 8 min, respectively. Since the semiconductor gas sensor is supersensitive to gas components, it is not necessary to use a conventional gas concentrator or other complicated equipment. In this study, VOC emission behavior from 4 types paints (lacquer, urethane vanish, water-base paint, enamel paint) for wood-based panel was investigated using VOC Analyzer. After a specimen was spreaded on aluminum foil ($6.32{\times}6.32cm$) in $3{\ell}$ polyester bag, after 24 hours we could measure maximum VOC emission level that is a stabilized VOC value. Xylene of VOCs was high emitted from lacquer, urethane vanish and water-based paint, and TVOC (Toluene + Ethylbenzene + Xylene + Styrene) of lacquer was the highest emission concentration than another.