• Title/Summary/Keyword: Polycrystalline silicon solar cell

Search Result 34, Processing Time 0.027 seconds

Effect of Processing Parameters on Direct Fabrication of Polycrystalline Silicon Wafer (다결정 실리콘 웨이퍼 직접제조에 대한 공정변수 영향)

  • Wi, Sung-Min;Lee, Jin-Seok;Jang, Bo-Yun;Kim, Joon-Soo;Ahn, Young-Soo;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.157-161
    • /
    • 2013
  • A ribbon-type polycrystalline silicon wafer was directly fabricated from liquid silicon via a novel technique for both a fast growth rate and large grain size by exploiting gas pressure. Effects of processing parameters such as moving speed of a dummy bar and the length of the solidification zone on continuous casting of the silicon wafer were investigated. Silicon melt extruded from the growth region in the case of a solidification zone with a length of 1cm due to incomplete solidification. In case of a solidification zone wieh a length of 2 cm, on the other hand, continuous casting of the wafer was impossible due to the volume expansion of silicon derived from the liquid-solid transformation in solidification zone. Consequently, the optimal length of the solidification zone was 1.5 cm for maintaining the position of the solid-liquid interface in the solidification zone. The silicon wafer could be continuously casted when the moving speed of the dummy bar was 6 cm/min, but liquid silicon extruded from the growth region without solidification when the moving speed of the dummy bar was ${\geq}$ 9 cm/min. This was due to a shift of the position of the solid-liquid interface from the solidification zone to the moving area. The present study reports experimental findings on a new direct growth system for obtaining silicon wafers with both high quality and productivity, as a candidate for an alternate route for the fabrication of ribbon-type silicon wafers.

A Study on Poly-Si Solar Cell of Novel Structure with the Reduced Effects of Grain Boundaries (결정입계 영향을 줄인 새로운 구조의 다결정 실리콘 모양전지에 관한 연구)

  • Lim, Dong-Gun;Lee, Su-Eun;Park, Sung-Hyun;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1738-1740
    • /
    • 1999
  • This paper deals with a novel structure of poly-Si solar cell. A solar cell conversion efficiency was degraded by grain boundary effect in Polycrystalline silicon. To reduce grain boundary effect, we performed a preferential grain boundary etching, $POCl_3$ n-type emitter doping, and then ITO film growth on poly-Si. Among the various preferential etchants, Schimmel etch solution exhibited the best result having grain boundary etch depth about $10{\mu}m$. RF magnetron sputter grown ITO films showed a low resistivity of $10^{-4}\Omega-cm$ and high transmittance of 85%. With well fabricated poly-Si solar cells. we were able to achieve as high as 15% conversion efficiency at the input power of 20mW/$cm^2$.

  • PDF

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Influence of surface roughness of ZnO layer on the growth of polycrystalline Si layer via aluminum-induced layer exchange process

  • Choi, Sung-Kuk;Chang, Won-Beom;Jung, Soo-Hoon;Hara, Kosuke;Watanabe, Haruna;Usami, Noritaka;Chang, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.692-697
    • /
    • 2016
  • This study investigated the effect of surface roughness of zinc oxide (ZnO) layer on the growth of polycrystalline Si layer via an Al-induced layer exchange process. It was found that the growth rate, grain size, crystallization fraction, and preferential orientation of the polycrystalline Si layer were strongly influenced by the surface roughness of the underlying ZnO layer. As the roughness of the ZnO surface increased, a higher growth rate (~40 min) and preferential Si (100) orientation were obtained because of the spatial concentration fluctuations in the Al-Si alloy, induced by the surface roughness of the underlying ZnO layer.

Characteristics of metal-induced crystallization (MIC) through a micron-sized hole in a glass/Al/$SiO_2$/a-Si structure (Glass/Al/$SiO_2$/a-Si 구조에서 마이크론 크기의 구멍을 통한 금속유도 실리콘 결정화 특성)

  • Oh, Kwang H.;Jeong, Hyejeong;Chi, Eun-Ok;Kim, Ji Chan;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.1-59.1
    • /
    • 2010
  • Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is studied with the structure of a glass/Al/$SiO_2$/a-Si, in which the $SiO_2$ layer has micron-sized laser holes in the stack. An oxide layer between aluminum and a-Si thin films plays a significant role in the metal-induced crystallization (MIC) process determining the properties such as grain size and preferential orientation. In our case, the crystallization of a-Si is carried out only through the key hole because the $SiO_2$ layer is substantially thick enough to prevent a-Si from contacting aluminum. The crystal growth is successfully realized toward the only vertical direction, resulting a crystalline silicon grain with a size of $3{\sim}4{\mu}m$ under the hole. Lateral growth seems to be not occurred. For the AIC experiment, the glass/Al/$SiO_2$/a-Si stacks were prepared where an Al layer was deposited on glass substrate by DC sputter, $SiO_2$ and a-Si films by PECVD method, respectively. Prior to the a-Si deposition, a $30{\times}30$ micron-sized hole array with a diameter of $1{\sim}2{\mu}m$ was fabricated utilizing the femtosecond laser pulses to induce the AIC process through the key holes and the prepared workpieces were annealed in a thermal chamber for 2 hours. After heat treatment, the surface morphology, grain size, and crystal orientation of the polycrystalline silicon (pc-Si) film were evaluated by scanning electron microscope, transmission electron microscope, and energy dispersive spectrometer. In conclusion, we observed that the vertical crystal growth was occurred in the case of the crystallization of a-Si with aluminum by the MIC process in a small area. The pc-Si grain grew under the key hole up to a size of $3{\sim}4{\mu}m$ with the workpiece.

  • PDF

Generation of Charged Clusters and their Deposition in Polycrystalline Silicon Hot-Wire Chemical Vapor Deposition (열선 CVD 증착 다결정 실리콘에서 전하를 띈 클러스터의 생성 및 증착)

  • Lee, Jae-Ik;Kim, Jin-Yong;Kim, Do-Hyeon;Hwang, Nong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.561-566
    • /
    • 2005
  • Polycrystalline silicon films were deposited using hot wire CVD (HWCVD). The deposition of silicon thin films was approached by the theory of charged clusters (TCC). The TCC states that thin films grow by self-assembly of charged clusters or nanoparticles that have nucleated in the gas phase during the normal thin film process. Negatively charged clusters of a few nanometer in size were captured on a transmission electron microscopy (TEM) grid and observed by TEM. The negatively charged clusters are believed to have been generated by ion-induced nucleation on negative ions, which are produced by negative surface ionization on a tungsten hot wire. The electric current on the substrate carried by the negatively charged clusters during deposition was measured to be approximately $-2{\mu}A/cm^2$. Silicon thin films were deposited at different $SiH_4$ and $H_2$ gas mixtures and filament temperatures. The crystalline volume fraction, grain size and the growth rate of the films were measured by Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The deposit ion behavior of the si1icon thin films was related to properties of the charged clusters, which were in turn controlled by the process conditions. In order to verify the effect of the charged clusters on the growth behavior, three different electric biases of -200 V, 0 V and +25 V were applied to the substrate during the process, The deposition rate at an applied bias of +25 V was greater than that at 0 V and -200 V, which means that the si1icon film deposition was the result of the deposit ion of charged clusters generated in the gas phase. The working pressures had a large effect on the growth rate dependency on the bias appled to the substrate, which indicates that pressure affects the charging ratio of neutral to negatively charged clusters. These results suggest that polycrystalline silicon thin films with high crystalline volume fraction and large grain size can be produced by control1ing the behavior of the charged clusters generated in the gas phase of a normal HWCVD reactor.

  • PDF

The Characteristics of High Temperature Crystallized Poly-Si for Thin Film Transistor Application (박막트랜지스터 응용을 위한 고온 결정화된 다결정실리콘의 특성평가)

  • 김도영;심명석;서창기;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.237-241
    • /
    • 2004
  • Amorphous silicon (a-Si) films are used in a broad range of solar cell, flat panel display, and sensor. Because of the greater ease of deposition and lower processing temperature, thin films are widely used for thin film transistors (TFTs). However, they have lower stability under the exposure of visible light and because of their low field effect mobility ($\mu$$_{FE}$ ) , less than 1 c $m^2$/Vs, they require a driving IC in the external circuits. On the other hand, polycrystalline silicon (poly-Si) thin films have superiority in $\mu$$_{FE}$ and optical stability in comparison to a-Si film. Many researches have been done to obtain high performance poly-Si because conventional methods such as excimer laser annealing, solid phase crystallization and metal induced crystallization have several difficulties to crystallize. In this paper, a new crystallization process using a molybdenum substrate has been proposed. As we use a flexible substrate, high temperature treatment and roll-to-roll process are possible. We have used a high temperature process above 75$0^{\circ}C$ to obtain poly-Si films on molybdenum substrates by a rapid thermal annealing (RTA) of the amorphous silicon (a-Si) layers. The properties of high temperature crystallized poly-Si studied, and poly-Si has been used for the fabrication of TFT. By this method, we are able to achieve high crystal volume fraction as well as high field effect mobility.

Direct-Aluminum-Heating-Induced Crystallization of Amorphous Silicon Thin Film (비정질 실리콘 박막의 알루미늄 직접 가열 유도 결정화 공정)

  • Park, Ji-Young;Lee, Dae-Geon;Moon, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1019-1023
    • /
    • 2012
  • In this research, a novel direct-aluminum-heating-induced crystallization method was developed for the purpose of application to solar cells. By applying a constant current of 3 A to an aluminum thin film, a 200-nm-thick amorphous silicon (a-Si) thin film with a size of $1cm{\times}1cm$ can be crystallized into a polycrystalline silicon (poly-Si) thin film within a few tens of seconds. The Raman spectrum analysis shows a peak of 520 $cm^{-1}$, which verifies the presence of poly-Si. After removing the aluminum layer, the poly-Si thin film was found to be porous. SIMS analysis showed that the porous poly-Si thin film was heavily p-doped with a doping concentration of $10^{21}cm^{-3}$. Thermal imaging shows that the crystallization from a-Si to poly-Si occurred at a temperature of around 820 K.

Solution growth of polycrystalline silicon on Al-Si coated borosilicate and quartz glass substrates for low cost solar cell application (저가태양전지에 응용을 위한 용액성장법에 의한 Al-Si층이 코팅된 유리기판상의 다결정 실리콘 박막성장에 관한 연구)

  • Lee, S.H.;Queisser, H.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.238-244
    • /
    • 1994
  • We investigated solution growth of silicon on borosilicate and quartz glass substrates in the temperature range of $800^{\circ}C~520^{\circ}C$. A thin Al-Si layer evaporated onto the substrate serves to improve the wetting between the substrate and the Al/Ga solvent. Nucleation takes place by a reaction of Al with $SiO_2$ from the substrate. We obtained silicon deposits with a grain size up to a few 100 $\mu\textrm{m}$. There was a perferential (111) orientation for the case of quartz glass substrates while there is a strong contribution of other orientations for the deposition of Si on borosilicate glass substrates.

  • PDF

The optical properties of columnar structure according to the growth angles of ZnO thin fims (성장각도에 따른 주상구조 ZnO 박막의 광학적 특성)

  • Ko, Ki-Han;Seo, Jae-Keun;Kim, Jae-Kwang;Kang, Eun-Kyu;Park, Mun-Gi;Ju, Jin-Young;Shin, Yong-Deok;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.127-127
    • /
    • 2009
  • The most important part of the fabrication solar cells is the anti-reflection coating when excludes the kinds of silicon substrates (crystalline, polycrystalline, or amorphous), patterns and materials of electrodes. Anti-reflection coatings reduce the reflection of sunlight and at last increase the intensity of radiation to inside of solar cells. So, we can obtain increase of solar cell efficiency about 10% using anti-reflection coating. There are many kinds of anti-reflection film for solar cell, such as SiN, $SiO_2$, a-Si, and so on. And, they have two functions, anti-reflection and passivation. However such materials could not perfectly prevent reflection. So, in this work, we investigated the anti-reflection coating with the columnar structure ZnO thin film. We synthesized columnar structure ZnO film on glass substrates. The ZnO films were synthesized using a RF magnetron sputtering system with a pure (99.95%) ZnO target at room temperature. The anti-reflection coating layer was sputtered by argon and oxygen gases. The angle of target and substrate measures 0, 20, 40, 60 degrees, the working pressure 10 mtorr and the 250 W of RF power during 40 minutes. The confirm the growth mechanism of ZnO on columnar structure, the anti-reflection coating layer was observed by field emission scanning electron microscopy (FE-SEM). The optical trends were observed by UV-vis and Elleso meter.

  • PDF