• Title/Summary/Keyword: Polyacrylamide gel electrophoresis

Search Result 924, Processing Time 0.026 seconds

Production and Characteristics of Pullulanase from Bacillus cereus (Bacillus cereus에 의한 Pullulanase의 생산 및 특성)

  • 정만재;임계숙;조대선;우정숙
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.409-416
    • /
    • 1992
  • The optimum cultural temperature and time for the pullulanase production by Bacillus cereus were $15^{\circ}C$ and 72 hrs, respectively. The addition of casein, nutrient broth and egg albumin to the basal medium, respectively, increased greatly the enzyme production. The enzyme was purified by ammonium sulfate fractionation, CM-cellulose and DEAE-cellulose column chromatographies. The specific activity of the purified enzyme was 29.09 U/mg protein and the yield of enzyme activity was 17.1% The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis and its molecular weight was estimated to be 61,000 by SDSpolyacrylamide disc gel electrophoresis. The isoelectric point for the purified enzyme was pH 7.0. The optimum temperature and pH were $40^{\circ}C$ and 6.5. The purified enzyme was stable below $35^{\circ}C$ and in the pH range of 6.5-11.0. It was greatly inhibited by $Ag^{+}$, $Hg^{2+}$ and $Zn^{2+}$, and its thermal stability was increased by the addition of $Ca^{2+}$ Among various substrates, pullulan was favorably hydrolyzed by the purified enzyme and the hydrolysis product 011 pulluIan was maltotriose.

  • PDF

Solubility and Electrophoretic pattern of Korea Ginseng Protein (한국산 인삼 단백질의 용해성 및 전기영동 패턴)

  • Choi, Cheong;Yoon, Sang-Hong;Bae, Man-Jong;An, Bong-Jeon
    • Applied Biological Chemistry
    • /
    • v.28 no.2
    • /
    • pp.88-91
    • /
    • 1985
  • For the systematic investigation of biochemical characteristics of Korean ginseng protein, protein fractions were analyzed by the techniques of sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The effect of pH and various salts on extractibility of ginseng protein were determined while the amino acid composition was studied by amino acid autoanalyzer. The protein was consisted of 66.08% of albumin and 20.51% of glutelin. Extractability of ginseng protein was the lowest in pH 3.0 and the highest in $pH\;6.0{\sim}8.0$. Among the neutral salts solution, $0.4M\;Na_2CO_3$ showed maximum extractability while $1.0M\;MgSO_4$ solution showed the least extractability. Resonable precipitation was obtained by 40% of acetone and ammonium sulfate. It has been shown by SDS polyacrylamide gel electrophoresis that the soluble protein had 11 bands. The molecular weight for the main protein of the soluble protein wasestimated to be 43,000. In amino acid composition of water extracted protein, arginine content was the highest 47.17% while on the contray, proline and cystine contents were very low.

  • PDF

Variation of Leucine Aminoeptidase Isozyme in Korean Land Races and Wild Soybeans (한국 재래 및 야생종 콩의 Leucine Aminopeptidase 변이)

  • 박경숙;윤문섭
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.129-133
    • /
    • 1997
  • A total 943 accession of soybeans (G. max) and 50 wild soybeans (G. soja) were examined for leucine aminopeptidase (LAP) isozyme variation by 5% polyacrylamide gel electrophoresis(PAGE) and isoelectric focusing(IEF) of pH 4~6.5. The Lap1*b by PAGE was the most common phenotype in both G. max and G. soja. The frequency of Lap1*b allele was observed to be higher in G. max(1.00) than in G. soja(0.96) of Korea. This result shows that G. max is fixed for Lapl*b allele at the Lap1 locus. LAP isozyme band type I and II were found using IEF of pH 4~6.5 in G. max and G. soja of Korea. Type I was observed from 92.8% in G. max and 92.0% in G. soja, and type II was discovered in 7.2% G. max and 8.0% G. soja. This result suggested the possibility to be found more various band types.

  • PDF

Heterogeneity of Lactate Dehyrogenase Isozymes in tissues of Lampetra japonica (칠성장어(Lampetra japonica) 조직내 젖산수소이탈효소 동위효소들의 이질성)

  • 조성규;염정주
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.319-328
    • /
    • 1993
  • All vertebrates other than lampreys exhibit multiple loci encoding lactate dehydrogenase (EC 1.1.1.27,LDH). From the result shown by cellulose acetate and starch gel electrophoresis, the lampreys were-reported to have only one isozyme. However in our results the LDH of skeletal muscle, heart and kidney in Lampetra japonica were separated into three isozymes and that of liver was separated into two isozymes by polyacrylamide gel electrophoresis. The LDH of skeletal muscle and heart were separated into four isozymes and that of liver was separated into two isozymes by polyacrylamide gel isoelectric focusing (PAGlEF). The LDH of skeletal muscle were separated into four isozymes through the chromatofocusing. The molecular weight of LDH isozymes in skeletal muscle was approximately estimated to be 140,000 by Sephadex G-200 gel filtration. The LDH isozymes of skeletal muscle, heart and liver were inhibited by pyruvate to the nearly similar degree. And the degree of inhibition by pyruvate showed the value between LDH A$_4$and LDH B$_4$isozyme. And the LDH isozymes in heart, liver and skeletal muscle were thermostable. The results mentioned above indicate that the LDH isozyme in lamprey (Lampetra japonica) has not one isozyme but isozymes. And it is also found out that the two structures of their subunits are similar each others.

  • PDF

Korean Paddy Soil Microbial Community Analysis Method Using Denaturing Gradient Gel Electrophoresis (Denaturing gradient gel electrophoresis를 이용한 한국의 논 토양 미생물 다양성 분석 방법)

  • Choe, Myeongeun;Hong, Sung-Jun;Lim, Jong-Hui;Kwak, Yunyoung;Back, Chang-Gi;Jung, Hee-Young;Lee, In-Jung;Shin, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Soil microbes are important integral components of soil ecosystem which have significant and diverse role in organic matter decomposition, nitrogen cycling, and nitrogen fixation. In this study an effective denaturing gradient gel electrophoresis (DGGE) method was employed for paddy soil microbial diversity survey. For optimum paddy soil microbial DNA extraction, different methods such as Lysis buffer, skim milk bead, sodium phosphate buffer, Epicentre Soil Master DNA extraction kit (Epicentre, USA) and Mo Bio Power Soil DNA kit (MO BIO, USA) methods were utilized. Among all the method, using Mo Bio Power Soil kit was most effective. DGGE analysis of Bacteria was carried out at 6% polyacylamide gel and 45-60% denaturing gradient in the optimal conditions. Whereas DGGE analysis of fungi was done at 6% polyacrylamide gel and 45-80% denaturing gradient in the optimal conditions. By applying the above assay, it was found that variation within the microbial community of paddy soil occurs by a factor of time. DGGE assay used in this study through for a variety of soil microbial analysis suggests the potential use of this method.

Purification of Acorn Tannin Hydrolyzing Enzyme of Aspergillus sp. AN-11 and Physiochemical Properties of It (Aspergillus sp. AN-11이 분비하는 도토리 Tannin 분해효소(分解酵素)의 정제(精製)와 물리화학적(物理化學的) 성질(性質))

  • Chae, Soo-Kyu;Yu, Tai-Jong;Kim, Byung-Mook
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.333-341
    • /
    • 1983
  • Tannase of Aspergillus sp. AN-11 isolated from contaminated acorns was purified by a procedure involving ammonium sulfate precipitation, DEAE-cellulose column chromatography and Sephadex G-200 gel filtration. Physiochemical properties of the purified tannase was investigated. Tannase was purified about 37 folds with the yield of 49% from the culture broth of Aspergillus sp. AN-11. The purified tannase was homogeneous on polyacrylamide gel disc electrophoresis and was dissociable into two identical subunits on SDS-polyacrylamide gel electrophoresis. The molecular weight of the tannase was determined to be 200,000 by gel filtration on Sephadex G-200. The purified tannase showed a typical protein ultraviolet spectrum. The enzyme had a optimum pH 5.5 and optimum temperature at 30 to $40^{\circ}C$. The enzyme was stable at a pH range from 5.0 to 6.5 and at the temperature below $30^{\circ}C$. The enzyme was inactivated remarkably by $CuCl_2$ and $ZnCl_2. The Km value of the enzyme was $7.58{\times}10^{-4}\;M$.

  • PDF

Purification of Heat-Stable Enterotoxin of Enterotoxigenic Escherichia coli eKT-53 (장독성 대장균 eKT-53 균주의 내열성 장독소 정제)

  • Do, Dea-Hong;Kim, Kyo-Chang;Kim, Do-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.76-83
    • /
    • 1992
  • Enterotoxigenic E. coli is one of the major causative agents of the infantile diarrhea and traveler's diarrhea. The heat-stable enterotoxin (ST) is thought to be a virulence factor in the pathogenesis of the diarrhea and to be a maker for identification of the enterotoxigenic E. coli from non pathogenic E. coli. ST producing E. coli KM-7 strain was isolated from the swine and molecular cloning of ST gene of KM-7 strain. Transformant eKT-53 $(ST^+,\;LT^-)$ was selected by infant mouse assay (IMA). The culture supernatant of eKT-53 strain was performed purification by multipled steps. The culture supernatant (crude ST) was purified by sequentially applying batch adsorption chromatography on Amberlite XAD-2 resin, ion exchange chromatography on DEAE-Sephacel anion exchanger, gel filtration chromatography on Bio-Gel P-6 and preparative polyacrylamide slab gel electrophoresis. About 113-fold purification was achieved with a yield of about 11% of crude ST and the minimum effective dose(MED) of this purified ST was about 2.8ng in IMA. Homogeneity of purified ST was demonstrated by showing a single band in analytical SDS polyacrylamide disc gel electrophoresis.

  • PDF

Condensation of DNA by a Histone-like Protein in Escherichia coli

  • Kim, So-Youn;Hwang, Deog-Su
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.143-148
    • /
    • 1995
  • In E. coli, chromosomal DNA associated with proteins is condensed into an organized structure known as nucleoid. Using a nitrocellulose filter binding assay to identify proteins forming nucleoid, a 21 kDa protein was purified from E. coli. The molecular weight of the purified protein was 21 kDa on SDS-polyactylamide gel electrophoresis and 24 kDa on gel permeation chromatography. A molecular weight of 21 kDa on SDS-polyacrylamide gel electrophoresis is unique among known proteins which are believed to be involved in the formation of nucleoid in E. coli. The 21 kDa protein nonspecifically binds to both double-stranded and single-stranded DNA. Sedimentation in a sucrose gradient revealed that the protein induced significant condensation of both supercoiled plasmid DNA and linear bacteriophage $\lambda$ DNA On the basis of quantitative Western-blot analysis, approximately 40,000 molecules of the protein were estimated to exist in an E. coli. The biochemical properties and cellular abundance of the 21 kDa protein suggest that this protein participates in the formation of nucleoid in E. coli.

  • PDF