• 제목/요약/키워드: Polyacrylamide (PAM)

검색결과 55건 처리시간 0.034초

고분자응집제를 이용한 건설현장 탁수처리 (Turbidity Reduction for Construction Runoff Using Polyacrylamide)

  • 강지훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.237-241
    • /
    • 2012
  • 많은 건설사업장의 경우 토사 유출에 따른 고농도 탁수가 발생하며, 그 탁도를 낮추기 위해 침전지 혹은 토사탈수백 등의 Best Management Practices(BMPs)를 이용한다. 본 연구에서는 유입되는 탁수에 고분자응집제인 polyacrylamide(PAM)를 액상으로 주입하고, 침전지와 토사탈수백을 통해 탁도를 저감하는 field-scale 실험을 수행하였다. 일반적으로 침전지 중간에는 유입되는 물의 힘을 분산시키기 위해 배플이라는 구조물이 설치되는데, 본 연구결과에 따르면 PAM을 통한 화학적 처리 없이 배플 자체로는 탁도를 낮추는 데 그 효과가 낮았으나, PAM주입을 할 경우 배플 설치 여부에 상관없이 90-98%까지 방류수 탁도를 낮출 수 있는 것으로 나타났다. 침사지 이후에 설치한 토사탈수 백은 그 효과가 낮았으나, 침사지 없이 토사탈수백만 사용할 경우 PAM을 이용한 화학적 처리 없이는 만족할 만한 방류수 탁도를 기대하기 어려웠다. 본 연구결과는 향후 미국에서 면적 10에이커 이상의 공사현장에 적용되는 탁도 규제에 대한 대응 방안으로 PAM을 이용한 탁수 처리의 효용성을 보여준다.

  • PDF

토양내 K-CES와 PAM처리가 시금치의 생육에 미치는 영향 (Effects of Potassium-Cyanoethylstarch (K-CES) and Polyacrylamide (PAM) on Growth of Spinach (Spinacia oleracea L.))

  • 김석균;카와베타 사네유키;사키야마 료조
    • 원예과학기술지
    • /
    • 제16권2호
    • /
    • pp.226-228
    • /
    • 1998
  • 타피오카 전분을 이용하여 제조한 흡수성 고분자 K-CES (potassium-cyanoethylstarch)와 합성계 고분자인 PAM (polyacrylamide) 처리가 시금치의 생육에 미치는 영향을 조사하였다. 타피오카 전분에 아크릴로니트릴을 반응시켜 시아노에틸화 전분을 제조하고, FT-IR 분석으로 니트릴기의 도입을 확인하였다. 제조한 K-CES와 PAM의 증류수에 대한 흡수력은 PAM이 47.8배로 K-CES의 37.6배에 비하여 다소 높았으나, $HNO_3$, $H_3PO_4$, $K_2SO_4$ 1% 용액에서는 PAM의 흡수력이 매우 감소하여 전해질 용액의 농도가 높을수록 K-CES의 흡수력이 클 것으로 생각되었다. PAM과 K-CES처리에 의해 시금치 초기생육의 촉진과 수량이 증가되어 흡수성 고분자 처리가 작물의 증수에 매우 효과적이었다.

  • PDF

Surface Analysis of Papers Treated with N-chloro-polyacrylamide Using X-ray Photoelectron Spectroscopy: Mechanism of Wet Strength Development

  • Chen Shaoping;Wu Zonghua;Tanaka Hiroo
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 1999년도 Pre-symposium of the 10th ISWPC Recent Advances in Paper Science and Technology
    • /
    • pp.276-281
    • /
    • 1999
  • The surfaces of sheets added with N-chloro-polyacrylamide (N-Cl-PAM) are analyzed using X-ray photoelectron spectroscopy (XPS) to clarify the chemical bonding involved in the paper strength development induced by N-Cl-PAM. The comparison of the observed N1s chemical shift of the sheet with those of the paper strength additives and the model compound, 1-butyryl-3-propyl urea, illustrated the presence of covalent bonds of alkyl acyl urea and urethane on the fiber surfaces. Thus the formation of the covalent bonds by N-Cl-PAM themselves and by N-Cl-PAM with cellulose and hemicellulose may be an explanation for much higher effectiveness of N-Cl-PAM on the improvement of wet strength of paper than A-PAM.

고분자유기응집제 (Polyacrylamide)를 활용한 농경지 사면 토양유실 저감 효과 분석 (Polyacrylamide, Its Beneficial Application of Soil Erosion Control from Sloped Agricultural Fields)

  • 김민영;최용훈;이상봉;김현정;김승희;김영진
    • 한국농공학회논문집
    • /
    • 제57권5호
    • /
    • pp.123-128
    • /
    • 2015
  • This study conducted a series of field experiments using soil conditioners, Polyacrylamide(PAM) and gypsum, to evaluate their effects in reducing sediment loss and surface runoff. In addition, the correction factors (K-alpha) for the erodibility factor (K) were determined to reflect the effects of PAM and PAM+gypsum in applying the USLE equation. Experimental erosion plots individually sized $10m^2$ (5 m long, 2 m wide and 1 m deep) have different slopes (10, 20 and 30%). Erosion plots were prepared for one control (C; no PAM and gypsum) and two treatments (P; PAM 20 kg/ha, PG; PAM 20 kg/ha+gypsum 3,000 kg/ha). The amounts of soil eroded and runoff were continuously monitored from July $1^{st}$ to Oct. $31^{st}$ in 2010 and compared to each other. The amount of sediment loss from a control plot was 399.2 ton/ha and the relative reduction of sediment loss were 11.4% and 33.4% for PAM-treated and PAM+gypsum treated plots, respectively. This study also determined the K-alpha factors in the USLE equation to account for the erosion control effectiveness of PAM and gypsum application. The K-alpha factors were calculated as 0.92 for PAM-treated plot and 0.69 for PAM+gypsum-treated plot. The findings of this study revealed that soil conditioners (PAM and gypsum) could play a significant role in controlling soil erosion. In addition, the modified USLE equation using the K-alpha could provide valuable information to make better decision on establishment of best management practice for soil erosion control in agriculture.

Retention and Drainage Characteristics with Inverse Emulsion Type C-PAM

  • Son, Dong-Jin;Kim, Bong-Yong
    • 펄프종이기술
    • /
    • 제38권5호
    • /
    • pp.24-30
    • /
    • 2006
  • This study was performed to characterize inverse emulsion type cationic polyacrylamide (PAM) and to compare with powder and salt dispersion type PAMs as a retention and drainage aid. Salt dispersion type PAM has defects of high amount of salt which increases conductivity of white water, low active polymer contents and relatively worse retention and drainage properties than others because of its low molecular weight. Powder type PAM has benefit of high active polymer contents and good retention and drainage properties, but defects of low dissolution speed and insoluble particle generation were observed. However, inverse emulsion type showed the best retention and drainage aids among them by controlling molecular weight and morphology easily and it had relatively higher active polymer contents and better solubility.

Compressibility and hydraulic conductivity of calcium bentonite treated with pH-responsive polymer

  • Choo, Hyunwook;Choi, Youngmin;Kim, Young-Uk;Lee, Woojin;Lee, Changho
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.329-337
    • /
    • 2020
  • Polyacrylamide (PAM) possesses high water absorption capacity and a unique pH-dependent behavior that confer large potential to enhance the engineering performance of clays. In this study, calcium bentonite was treated with a nonionic PAM. Flexible-wall permeability test and the consolidation test were performed at different pH values to evaluate the effects of PAM treatment on the hydraulic and consolidation properties. Test results demonstrate that index properties are affected by the adsorbed PAM on clay surface: a decrease in specific gravity, a decrease in net zeta potential, and an increase in liquid limit are observed due to the PAM treatment. At a given pH, the compressibility of the treated clay is greater than that of the untreated clay. However, the compression indices of untreated and treated clays can be expressed as a single function of the initial void ratio, regardless of pH. Hydraulic conductivity is reduced by PAM treatment about 5 times at both neutral and alkaline pH conditions under similar void ratios, because of the reduction in size of the water flow channel by PAM expansion. However, at acidic pH, the hydraulic conductivity of the treated clay is slightly higher than the untreated clay. This reflects that the treated bentonite with PAM can be beneficially used in barrier system for highly alkaline residues.

Synthesis and Optical Characteristics of PAM/HgS Nanocomposites

  • Qin, Dezhi;Yang, Guangrui;Zhang, Li;Du, Xian;Wang, Yabo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1077-1081
    • /
    • 2014
  • Polyacrylamide (PAM) -HgS nanocomposites were successfully prepared in polyacrylamide (PAM) matrix. From TEM and XRD characterizations, the synthesized HgS nanocrystals were chain-like spherical in shape with a diameter of about 40-60 nm and high crystalline quality. The quantum-confined effect of HgS nanocrystals was confirmed by UV-vis diffuse reflection spectra. The optical properties of products were investigated by using photoluminescence (PL) spectra, which showed that HgS nanocrystals exhibited good optical properties with maximum emission peak at about 640 and 650 nm at different reaction temperatures. The interaction of HgS nanocrystals with PAM was studied through FT-IR spectroscopy and TG analysis, which suggested that $Hg^{2+}$ could interact with functional groups of PAM. The experimental results indicated that PAM not only induced nucleation, but also inhibited further growth of HgS crystals and play an important role in the formation of PAM/HgS nanocomposites. In addition, the possible mechanism of HgS nanoparticles growth in PAM solution was also discussed.

PAM과 K-CMC처리가 토양의 이화학성 및 양배추의 수량에 미치는 영향 (Effects of Polyacrylamide (PAM) and Potassium-Carboxymethylcellulose (K-CMC) on Soil and Yield of Cabbage (Brassica oleracea L. cv. Empire))

  • 김석균;김경제
    • 원예과학기술지
    • /
    • 제16권2호
    • /
    • pp.222-225
    • /
    • 1998
  • 천연계 흡수성 고분자 K-CMC (potassium-carboxymethylcellulose)와 합성계인 PAM (polyacrylamide)이 토양의 물리화학적 특성과 양배추의 생육에 미치는 영향을 조사하였다. 제조한 K-CMC에 친수성인 카르복실기의 도입을 FT-IR로 확인하였고, 부직포를 이용하여 측정한 PAM과 K-CMC의 흡수력은 증류수에서는 PAM이 더 높았으나, 염화나트륨 3% 용액에서는 K-CMC와 PAM이 같아서 비료성분이 많은 토양에서는 K-CMC가 더 효과적인 듯 하다. 토양의 입자크기 1.0mm 이상의 입단율은 K-CMC와 PAM처리에서 각각 9.6%와 16.6%가 증가하였고, 투수속도도 K-CMC와 PAM처리 모두 촉진되어 투수율 또한 증가하였다. 토양의 화학성분에서는 K-CMC처리가 토양의 K 함량을 증가시켰으나, 다른 성분에서는 차이가 없었다. K-CMC와 PAM처리는 양배추의 초기생육 및 수량, 그리고 비타민C 함량을 증가시켜서 양배추의 수량과 품질의 향상에도 효과적이었다. 그러나, 본 실험에서 제조한 K-CMC의 흡수력이 다소 낮기 때문에 더 높은 흡수력을 가진 천연계 흡수성 고분자의 개발이 필요하다고 사료된다.

  • PDF

STUDY OF AMPHOTERIC POLYACRYLAMIDE USED AS RETENTION AND DRAINAGE AIDS IN PAPERMAKING

  • Su, Xie-Lai;Yi, Wang-Hai;Shan, Chen-Fu;Quan, Long-Yan
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 1999년도 Proceedings of Pre-symposium of the 10th ISWPC
    • /
    • pp.56-60
    • /
    • 1999
  • In this paper, a series of amphoteric polyacrylamide(PAM) with different molecular weight and charge were synthesized and used as retention and dewatering aids. Better products had been selected and tested under varied conditions. Effects of molecular weight, cationic charge density, degree of hydrolysis and other factors of PAM on retention and dewatering of papermaking were also considered. Finally, synthesized quaternary and tertiary ammonium amphoteric polyacrylamide were practised in paper mill trial.