• 제목/요약/키워드: Polya posterior

검색결과 7건 처리시간 0.014초

이항 비율의 가중 POLYA POSTERIOR 구간추정 (Interval Estimation for a Binomial Proportion Based on Weighted Polya Posterior)

  • 이승천
    • 응용통계연구
    • /
    • 제18권3호
    • /
    • pp.607-615
    • /
    • 2005
  • 최근 여러 학자들에 의해 이항 비율의 구간 추정에 많이 사용되고 있는 Wald 신뢰구 간의 문제점이 재조명되고 있고, 이에 대한 대안으로 이항 비율의 새로운 신뢰구간들이 발표되고 있다. 본 논문에서는 가중 Polya posterior를 이용한 베이지안 구간추정을 구하였다. 이 구간추정은 이항분포의 공액분포인 베타 사전분포에서 구한 전통적인 베이지안 구간추정과 같으나 추정의 편의를 위하여 정규근사에 의한 신뢰구간을 구할 때, 표본크기가 크면 실제적으로 Argresti와 Coull (1998)의 신뢰구간과도 일치하였다. 또 새로운 신뢰구간은 표본크기가 작은 경우와 비율이 극히 작은 경우에도 매우 유용한 신뢰구간이 된다는 것을 살펴보았다.

독립표본에서 두 모비율의 차이에 대한 가중 POLYA 사후분포 신뢰구간 (The Weighted Polya Posterior Confidence Interval For the Difference Between Two Independent Proportions)

  • 이승천
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.171-181
    • /
    • 2006
  • 모비율 차이의 구간 추정에서 표준으로 인식되고 있는 Wald 신뢰구간은 모비율 구간 추정과 마찬가지로 포함확률의 근사성에서 문제가 있다는 것이 알려져 있다. 이에 대한 대안으로 모비율 차이의 신뢰구간에 대한 많은 연구가 있어 왔으나 대부분의 신뢰구간은 매우 복잡한 과정을 통해 얻어지게 되어 있어 실용성에 대한 문제가 제기될 수 있다. 이와 비교하여 Agresti와 Caffo(2000)에 의해 제시된 신뢰구간은 매우 간편한 식에 의해 구할 수 있어 이해하기 쉽고 포함확률과 포함확률의 평균절대오차에 있어 다른 복잡한 신뢰 구간과 필적할 수 있다. 그러나 Agresti-Caffo 신뢰 구간은 포함확률이 명목 신뢰수준을 상회하는 보수적인 구간으로 알려져 있다. 본 논문에서는 이승천(2005)에서 이항비율의 신뢰구간을 구하기 위해 사용된 가중 Polya 사후분포를 이용하여 두 모비율 차이의 신뢰구간을 구하였다. 이렇게 구하여진 신뢰구간은 간편성은 물론 Agresti-Caffo 신뢰구간의 보수성을 개선하였다.

베이지안 접근에 의한 모비율 선형함수의 신뢰구간 (Confidence Intervals for a Linear Function of Binomial Proportions Based on a Bayesian Approach)

  • 이승천
    • 응용통계연구
    • /
    • 제20권2호
    • /
    • pp.257-266
    • /
    • 2007
  • 모비율에 대한 신뢰구간의 구축에 있어 정규근사에 의한 Wald 신뢰구간이 표준으로 인식되어 왔으나, 최근 여러 학자들에 의해 Wald 신뢰구간은 근사성에서 심각한 문제가 있다는 것이 밝혀지고 있어 Agresti와 Coull(1998)에 의해 제안된 방법이 새로운 표준이 되어 가고 있다. Agresti-Coull 방법은 간편하면서도 근사성 문제를 획기적으로 개선하였으나 모비율에 대한 여러 가지 문제에서 보수적인 신뢰구간을 제시하고 있다. 본 연구에서는 베이지안 접근 방법에 의해 Agresti-Coull 방법의 보수성을 개선한 모비율 선형 함수의 신뢰구간을 제시한다.

Identifying differentially expressed genes using the Polya urn scheme

  • Saraiva, Erlandson Ferreira;Suzuki, Adriano Kamimura;Milan, Luis Aparecido
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.627-640
    • /
    • 2017
  • A common interest in gene expression data analysis is to identify genes that present significant changes in expression levels among biological experimental conditions. In this paper, we develop a Bayesian approach to make a gene-by-gene comparison in the case with a control and more than one treatment experimental condition. The proposed approach is within a Bayesian framework with a Dirichlet process prior. The comparison procedure is based on a model selection procedure developed using the discreteness of the Dirichlet process and its representation via Polya urn scheme. The posterior probabilities for models considered are calculated using a Gibbs sampling algorithm. A numerical simulation study is conducted to understand and compare the performance of the proposed method in relation to usual methods based on analysis of variance (ANOVA) followed by a Tukey test. The comparison among methods is made in terms of a true positive rate and false discovery rate. We find that proposed method outperforms the other methods based on ANOVA followed by a Tukey test. We also apply the methodologies to a publicly available data set on Plasmodium falciparum protein.

A Naive Multiple Imputation Method for Ignorable Nonresponse

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제11권2호
    • /
    • pp.399-411
    • /
    • 2004
  • A common method of handling nonresponse in sample survey is to delete the cases, which may result in a substantial loss of cases. Thus in certain situation, it is of interest to create a complete set of sample values. In this case, a popular approach is to impute the missing values in the sample by the mean or the median of responders. The difficulty with this method which just replaces each missing value with a single imputed value is that inferences based on the completed dataset underestimate the precision of the inferential procedure. Various suggestions have been made to overcome the difficulty but they might not be appropriate for public-use files where the user has only limited information for about the reasons for nonresponse. In this note, a multiple imputation method is considered to create complete dataset which might be used for all possible inferential procedures without misleading or underestimating the precision.

Confidence Intervals for a Proportion in Finite Population Sampling

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.501-509
    • /
    • 2009
  • Recently the interval estimation of binomial proportions is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the well-known Wald confidence interval. Various alternatives have been proposed. Among them, the Agresti-Coull confidence interval, the Wilson confidence interval and the Bayes confidence interval resulting from the noninformative Jefferys prior were recommended by Brown et al. (2001). However, unlike the binomial distribution case, little is known about the properties of the confidence intervals in finite population sampling. In this note, the property of confidence intervals is investigated in anile population sampling.

폴랴-감마 잠재변수에 기반한 베이지안 영과잉 음이항 회귀모형: 약학 자료에의 응용 (A Bayesian zero-inflated negative binomial regression model based on Pólya-Gamma latent variables with an application to pharmaceutical data)

  • 서기태;황범석
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.311-325
    • /
    • 2022
  • 0의 값을 과도하게 포함하는 가산자료는 다양한 연구 분야에서 흔히 나타난다. 영과잉 모형은 영과잉 가산자료를 분석하기 위해 가장 일반적으로 사용되는 모형이다. 영과잉 모형에 대한 전통적인 베이지안 추론은 조건부 사후분포의 형태가 폐쇄형 분포로 나타나지 않아 모형 적합 과정이 용이하지 않다는 한계점이 존재했다. 그러나 최근 Pillow와 Scott (2012)과 Polson 등 (2013)이 제안한 폴랴-감마 자료확대전략으로 인해, 로지스틱 회귀모형과 음이항 회귀모형에서 깁스 샘플링을 통한 추론이 가능해지면서, 영과잉 모형에 대한 베이지안 추론이 용이해졌다. 본 논문에서는 베이지안 추론에 기반한 영과잉 음이항 회귀모형을 Min과 Agresti(2005)에서 분석된 약학 연구 자료에 적용해본다. 분석에 사용된 자료는 경시적 영과잉 가산자료로 복잡한 자료 구조를 가지고 있다. 모형 적합 과정에서는 깁스 샘플링을 통한 추론을 수행하기 위해 폴랴-감마 자료확대전략을 사용한다.