• Title/Summary/Keyword: Poly-P Content

Search Result 170, Processing Time 0.031 seconds

Production of Poly(3-hydroxybutyrate) [P(3HB)] with High P(3HB) Content by Recombinant Escherichia coli Harboring the Alcaligenes latus P(3HB) Biosynthesis Genes and the E. coli ftsZ Gene

  • Choi, Jong-Il;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.722-725
    • /
    • 1999
  • Filamentation-suppressed recombinant Escherichia coli strain harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes and the E. coli ftsZ gene was constructed and cultivated for the production of poly(3-hydroxybutyrate) [P(3HB)] with high concentration and high content. By the pH-stat fed-batch culture of this recombinant E. coli strain XL1-Blue(pJC5), the final cell concentration and P(3HB) concentration obtained in 44.25h were 172.2g cell dry weight/l and 141.9g P(3HB)/l, respectively, resulting in productivity of 3.21g P(3HB)/l-h. More importantly, the P(3HB) content obtained was 82.4 wt %, which was significantly higher than that obtained with the recombinant E. coli harboring only the PHA biosynthesis genes.

  • PDF

Pseudo Liquid Crystallinity and Characteristics of PHB/PEN/PET Melt Blend (PHB/PEN/PET 삼상계 용융혼합물의 의사액정상 및 특성연구)

  • 박재기;정봉재;김성훈
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.113-123
    • /
    • 2000
  • Poly(p-hydroxybenzoate) (PHB)/poly(ethylene terephthalate) (PET) 8/2 thermotropic liquid crystalline copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to obtain the pseudo liquid crystalline (LC) phase of ternary blends. The torque values of blends with increasing PHB content were abruptly decreased above 40 wt% of PHB content, because the melt viscosity of ternary blends decreased. Tensile strength and initial modulus of blends containing above 30 wt% PHB were improved with increasing PHB content. Tensile strength and modulus of fiber were increased with PHB contents and take-up speed. Degree of transesterification and randomness of blends were increased with blending time. The blend of 40 wt% PHB was shown pseudo LC phase in the polarized optical photographs. Crystallinity of PHB/PEN/PET ternary blend were increased with PHB content.

  • PDF

The Effects of Intramolecular Interactions of Random Copolymers on the Phase Behavior of Polymer Mixtures

  • Kim, M. J.;J. E. Yoo;Park, H. K.;Kim, C. K.
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2002
  • To explore the effects of intramolecular interactions within the copolymer on the phase separation behavior of polymer blends, copolymers having two different types of intramolecular interactions, i.e., intramolecular repulsion and intramolecular attraction were prepared . In this study, poly(styrene-co-methylmethacrylate) (P(S-MMA)) having intramolecular repulsion caused by positive interaction between styrene and MMA and poly(styrene-co-ethyl-methacrylate) (P(S-EMA)) and poly(styrene-co-cyclohexylmethacrylate) (P(S-CHMA)) having intramolecular attraction caused by negative interaction between styrene and methacrylate were blended with tetramethyl poly-carbonate (TMPC). The phase behavior of blends was examined as a function of copolymer composition and blend composition. TMPC formed miscible blends with styrenic copolymers containing less than certain amount of methacrylate. The phase separation temperature of TMPC blends with copolymer such as P(S-MMA) and P(S-EMA), first increases with methacrylate content, goes through a maximum and then decreases just prior to the limiting content of methacrylate for miscibility, while that of TMPC blends with P(S-CHMA) always decreases. The calculated interaction energy for TMPC-P(S-EMA) pair is negative and monotonically increases with EMA content of the copolymer. Such behavior contradicted the general notion that systems with more favorable energetic interactions have higher LCST, The detailed inspection of the lattice-fluid theory related to the phase behavior was performed to explain such behavior.

Swelling Behavior and Drug Release of Poly(vinyl alcohol) Hydrogel Cross-Linked with Poly(acrylic acid)

  • Byun, Hong-Sik;Hong, Byung-Pyo;Nam, Sang-Yong;Jung, Sun-Young;Rhim, Ji-Won;Lee, Sang-Bong;Moon, Go-Young
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.189-193
    • /
    • 2008
  • Thermal cross-linking method of poly(vinyl alcohol) (PVA) using poly(acrylic acid) (PAA) was carried out on PVA/PAA hydrogels. The level of gelation was measured in the PVA/PAA hydrogels with various PAA contents. The swelling behavior at various pHs showed that the swelling kinetics and water contents of the PVA/PAA hydrogels reached equilibrium after 30 h, and the time to reach the equilibrium state decreased with increasing PAA content in the hydrogel. The water content increased with increasing pH of the buffer solution. The permeation and release of the drug were tested using indomethacin as a model drug. The permeated and released amounts of the drug increased with decreasing the PAA content because of the low free volume in the hydrogel due to the higher cross-linking density. The kinetic profile of drug release at various pHs showed that all samples reached the equilibrium state within the 5 h.

Effect of Poly(vinyl alcohol) on the Thermally Induced Conformational Change of Poly(D-Glutamic acid)

  • Cho Chong-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.2
    • /
    • pp.60-66
    • /
    • 1982
  • In relation to denaturation of proteins, thermally induced conformational change of poly(D-glutamic acid) was studied in the presence of poly(vinyl alcohol) at low pH, where poly(D-glutamic acid) undergoes a helix-to-${\beta}$ transition without any other polymer. In a dilute solution, poly(vinyl alcohol) enhanced the ${\alpah}-to-{\beta}_1$ transition of poly(D-glutamic acid) due to intermolecular interaction between the two polymers. On the other hand, this conformational change was interrupted to a large extent in a concentrated solution, due to the interpenetration of poly(vinyl alcohol) chain into poly(D-glutamic acid) chain which prevented the intramolecular association of poly(D-glutamic acid) chain. A conformational change from ${\beta}_1\;to\;{\beta}_2$ of poly(D-glutamic acid) was observed for the films obtained by casting during annealing the mixture solutions. The ${\beta}_2$ content in the cast film increased with increasing poly(vinyl alcohol) content in the mixture.

Syntheses and Swelling Behaviors of Poly(n-isopropylacrylamide-co-acrylonitrile) Hydrogels (Poly(N-isopropylacrylamide-co-acrylonitrile) 수화젤의 합성과 팽윤거동)

  • Piao, Zhe Fan;Ham, Myong-Jo;Kim, Young-Ho
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.349-355
    • /
    • 2007
  • Poly(N-isopropylacrylamide-co-acrylonitrile) [P(NIPAAm-co-AN)] copolymers with AN content of up to 10 mol% and their hydrogels were synthesized using water as a reaction medium, and the effects of AN unit incorporation on the critical gel transition temperature(CGTT) and swelling behaviors of the hydrogels were investigated. The CGTT of the copolymer hydrogel was $30{\sim}32\;^{\circ}C$, decreasing with increasing AN content. Below CGTT, swelling rate and equilibrium swelling ratio of the copolymer hydrogel decreased with increasing AN content. On the other hand, it exhibited faster deswelling and lower equilibrium deswelling ratio with increasing AN content above CGTT.

Poly(benzyl-L-histidine)-b-Poly(ethylene glycol) Micelle Engineered for Tumor Acidic pH-Targeting, in vitro Evaluation

  • Lee, Eun-Seong;Youn, Yu-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1539-1544
    • /
    • 2008
  • A polymeric micelle, based on the poly(benzyl-L-histidine)-b-poly(ethylene glycol) (polyBz-His-b-PEG) diblock copolymer, was designed as a tumor-specific targeting carrier. The micelles (particle size: 67-80 nm, critical micelle concentration (CMC); 2-3 $\mu$g/mL) were formed from the diafilteration method at pH 7.4, as a result of self-assembly of the polyBz-His block at the core and PEG block on the shell. Removing benzyl (Bz) group from polyBz-His block provided pH-sensitivity of the micellar core; the micelles were physically destabilized in the pH range of pH 7.4-5.5, depending on the content of the His group free from Bz group. The ionization of His group at a slightly acidic pH promoted the deformation of the interior core. These pHdependent physical changes of the micelles provide the mechanism for pH-triggering anticancer drug (e.g., doxorubicin: DOX) release from the micelle in response to the tumor’s extracellular pH range (pH 7.2-6.5).

Velume Phase Transition of Poly (N-isopropylacrylamide-co-sodium methacrylate) Hydrogel Crosslinked with Poly(ethylene glycol) diacrylate (Poly(ethylene glyco1) diacrylate로 가교된 Poly(N-isopropylacrylamide) Hydrogel의 부피 상전이 특성)

  • 김선아;한영아;손성옥;지병철
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.653-660
    • /
    • 2002
  • The volume phase transition of poly(N-isopropylacrylamide) (PNIPAAm) and poly (N-isopropylacrylamide-co-sodium methacrylate) (P (NIPAAm-co-SMA)) hydrogels crosslinked with poly (ethylene glycol) diacrylate (PEGDA) was investigated in consideration of water content and surface area. The volume phase transition temperature of hydrogel was not affected by the concentration of crosslinking agent, which increased over 40$\^{C}$ by incorporating a small amount of SMA. Higher volume phase transition temperature was obtained when PEGAD was used as a crosslinking agent, suggesting that the chain length of crosslinking agent had a significant effect on the volume phase transition temperature. The surface area of PNIPAAm and P (NIPAAm-co-SMA) gels fell off around the volume phase transition temperature, resulting from the fact that the size of pores reduced remarkably in the course of the volume phase transition. Hence, the surface area and the pore size were considered to be important factors indicating the volume phase transition.

Proton Selectivity through Poly(vinyl alcohol) Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell

  • Higa, Mitsuru;Sugita, Mikinori;Maesowa, Shinichi;Hatemura, Kentaro;Endo, Nobutaka
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.270-270
    • /
    • 2006
  • We have prepared polymer electrolyte membranes (PEMs) for DMFC from polymer mixture of poly(vinyl alcohol) and poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid) (AP-2) changing the AP-2 content. The proton conductivity(${\Box}$) and methanol permeability(P) of the PEMs increase with increasing AP-2 content because the water content of the PEMs increases with increasing AP-2 content. The proton permselectivity of the PEMs, which is defined as ${\Box}={\Box}/P$, indicates higher values than that of $Nafion{(R)}$117.

  • PDF

Interaction between Poly(L-lysine) and Poly(N-isopropyl acrylamide-co-acrylic acid) in Aqueous Solution

  • Sung, Yong-Kiel;Yoo, Mi-Kyong;Cho, Chong-Su
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2000
  • A series of pH/temperature sensitive polymers were synthesized by copolymerizing N-isopro-pyl acrylamide(NIPAAm) and acrylic acid(AAc) . The influence of polyelectrolyte between poly(allyl amine) (PAA) and poly(L-lysine)(PLL) on the lower critical solution temperature(LCST) of pH/temperature sensitive polymer was compared in the range of pH 2∼12. The LCST of PNIPAAm/water in aqueous poly(NIPAAm-co-AAc) solution was determined by cloud point measurements. A polyelectrolyte complex was prepared by mixing poly(NIPAAm-co-AAc) with poly(allyl amine) (PAA) or poly(L-lysine) (PLL) solutions as anionic and cationic polyelectrolytes, respectively. The effect of polyelectrolyte complex formation on the conformation of PLL was studied as a function of temperature by means of circular dichroism(CD). The cloud points of PNIPAAm in the aqueous copolymers solutions were stongly affected by pH, the presence of polyelectrolyte solute, AAc content, and charge density. The polyelectrolyte complex was formed at neutral condition. The influence of more hydrophobic PLL as a polyelectrolyte on the cloud point of PNIPAAm in the aqueous copolymer solution was stronger than that of poly(allyl amine)(PAA). Although polymer-polymer complex was formed between poly(NIPAAm-co-AAc) and PLL, the conformational change of PLL did not occur due to steric hinderance of bulky N-isopropyl groups of PNIPAAm.

  • PDF